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Abstract—Dispatching rules are usually applied to schedule 

jobs in Flexible Manufacturing Systems (FMSs) dynamically. 

Despite their frequent use, one of the drawbacks that they 

display is that the state the manufacturing system is in dictates 

the level of performance of the rule. As no rule is better than all 

the other rules for all system states, it would highly desirable to 

know which rule is the most appropriate for each given 

condition, and to this end this paper proposes a scheduling 

approach that employs Support Vector Machines (SVMs) and 

case-based reasoning (CBR). Using these latter techniques, and 

by analysing the earlier performance of the system, “scheduling 

knowledge” is obtained whereby the right dispatching rule at 

each particular moment can be determined. A module that 

generates new control attributes is also designed in order to 

improve the “scheduling knowledge” that is obtained. 

Simulation results show that the proposed approach leads to 

significant performance improvements over existing 

dispatching rules. 
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I. INTRODUCTION 

One of the most commonly applied solutions to the 

scheduling problem in FMSs involves using dispatching 

rules, which have been evaluated for performance by many 

researchers (see for example, [1]-[3]). Almost all the above 

studies point to the fact that rule performance depends on the 

criteria that are chosen, and the system‟s configuration and 

conditions (utilization level of the system, relative loading, 

due date tightness, and so on). It would thus be interesting to 

be able to change dispatching rules at the right moment 

dynamically.  

The literature describes two basic approaches to modify 

dispatching rules. The first approach is to select a rule at the 

appropriate moment by simulating a set of pre-established 

dispatching rules and opting for the one that provides the best 

performance (see for example, [4]-[7]). The second approach, 

involving artificial intelligence, requires a set of earlier 

system simulations (training examples) to determine what the 

best rule is for each possible system state. A machine learning 

algorithm [8] is trained to acquire knowledge through these 
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training examples, and this knowledge is then used to make 

intelligent decisions in real time (see for example, [9]-[11]). 

Aytug [12] and Priore [13] provide a review in which 

machine learning is applied to solving scheduling problems. 

Nevertheless, there are hardly any studies in the literature 

that compare the different types of machine learning 

algorithms used in scheduling problems. This paper therefore 

presents a scheduling approach that uses and compares 

SVMs and CBR. To improve the manufacturing system‟s 

performance, a new approach is also proposed whereby new 

control attributes that are arithmetical combinations of the 

original attributes can be determined. 

The rest of this paper is organized as follows. Machine 

learning algorithms used in this paper are first described. An 

approach to scheduling jobs that employs machine learning is 

then presented. This is followed by the experimental study, 

which describes a new approach to determine new control 

attributes from the original ones. The two machine learning 

algorithms used are also compared. Finally, the proposed 

scheduling approach is compared with the alternative of 

using a combination of dispatching rules constantly. A 

summary of the results obtained concludes the paper. 

 

II. CASE-BASED REASONING AND SUPPORT VECTOR 

MACHINES 

The nearest neighbour algorithm is one of the most popular 

of CBR algorithms [14]. The formulation of this algorithm, 

called NN, or k-NN in the more sophisticated version is 

extremely simple. To calculate a new case‟s class using this 

method, the distances between the case and the training 

examples have to be calculated and the shortest distance 

found. The new case‟s class will be the same as the „nearest‟ 

training example‟s class. The following formulation is 

employed to calculate the distance (d(x,e)) between a new 

case (x) and a training example (e): 
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Another two more sophisticated versions of the nearest 

neighbor algorithm have also been applied in this study. In 

the first of the two, an integer value of k of three is employed, 

so that the three nearest neighbors are calculated for each x. 
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where n is the number of attributes considered; aix is the value 

of attribute i in case x; aie is the value of attribute i in example 

e, and wi is the weight assigned to attribute i as a function of 

its importance.
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The class of x is then determined as a function of the class of 

the majority of the three neighbors. In the second version, a 

value of k of five is used. 

Support vector machines [15] were originally designed for 

binary classification. Let (x1, y1), (x2, y2), … , (xn, yn) be a 

group of data belonging to Class 1 or Class 2, where xiRN 

and the associated labels be yi=1 for Class 1and -1 for Class 2 

(i=1, … , n). The formulation of SVMs is as follows: 
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where w is the weight vector; C is the penalty weight; 
i  are 

non-negative slack variables; b is a scalar, and xi are mapped 

into a higher dimensional space by a non-linear mapping 

function  . Mapping function   needs to satisfy the 

following equation: 

 

)()(),( j
T

iji xxxxk                           (4) 

 

where ),( ji xxk is called kernel function. 

Minimizing   ww21 T implies that SVMs tries to maximize 

w2 , which represents the margin of separation between 

both classes. The data that satisfy the equality in (3) are called 

support vectors. Moreover, by adding a set of non-negative 

Lagrange multipliers i and i to generate the Lagrangian, the 

upper- mentioned constrained optimization problem can be 

worked out with the dual form shown below: 
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Having obtained the support vectors (SVs), the decision 

function for an unseen data (x) is as follows: 
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III. SCHEDULING USING CASE-BASED REASONING AND 

SUPPORT VECTOR MACHINES 

Two contrasting features need to be fulfilled for a real-time 

scheduling system that dynamically modifies dispatching 

rules to work properly [16]: 

1) Rule selection must take into account a variety of 

information about the manufacturing system in real time. 

2) Rule selection must be completed fast enough for real 

operations not to be delayed. 

One way of doing this is to employ some class of 

knowledge about the relationship between the manufacturing 

system‟s state and the rule to be applied at that moment. 

However, one of the most difficult problems is precisely how 

this knowledge is to be acquired. Machine learning 

algorithms, such as SVMs or CBR, are used to do this. 

However, the training examples and the learning algorithm 

must be adequate for this knowledge to be useful. Moreover, 

in generating the training examples, the attributes selected are 

crucial to the performance of the scheduling system [17]. 
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Fig. 1. General overview of a knowledge-based scheduling system. 

 

Fig. 1 shows a scheduling system that employs machine 

learning. The example generator creates different 

manufacturing system states via the simulation model and 

choose the best dispatching rule for each particular state. The 

machine learning algorithm employs the examples to 

generate the knowledge required to make future scheduling 

decisions. The real time control system using the „scheduling 

knowledge‟, the manufacturing system‟s state and 

performance, choose the best dispatching rule for job 

scheduling. Further examples may possibly be needed in 

order to refine the knowledge about the manufacturing 

system depending on the performance of the latter. 

 

IV. EXPERIMENTAL STUDY 

A. The Proposed FMS 

The selected FMS consists of a loading station, an 

unloading station, four machining centres and a material 

handling system. Two types of decision are studied in the 

FMS proposed. The first is the selection by the machine of 

parts assigned to it using the following dispatching rules: 

SPT (Shortest Processing Time), EDD (Earliest Due Date), 

MDD (Modified Job Due Date), and SRPT (Shortest 

Remaining Processing Time). These rules were selected 

because of their fine performance in earlier studies (see for 

example, [18]). The second type of decision involves the 

selection of the machines by the parts, as an operation can be 

processed on different machines. The dispatching rules 

employed in this FMS are: SPT (Shortest Processing Time), 

NINQ (Shortest Queue), WINQ (Work in Queue), and LUS 

(Lowest Utilized Station). 
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B. Generating Training and Test Examples 

The control attributes used to describe the manufacturing 

system state must first be defined in order to generate training 

and test examples. In this particular FMS these are: F, flow 

allowance factor which measures due date tightness [19]; 

NAMO: number of alternative machines for an operation; 

MU: mean utilization of the manufacturing system; Ui: 

utilization of machine i; WIP: mean number of parts in the 

system; RBM: ratio of the utilization of the bottleneck 

machine to the mean utilization of the manufacturing system; 

RSDU: ratio of the standard deviation of individual machine 

utilizations to mean utilization. 

The training and test examples needed for the learning 

stage are obtained by simulation using the WITNESS 

programme. The following suppositions were made to do this: 

(1) Jobs arrive at the system following a Poisson distribution; 

(2) Processing times for each operation are sampled from an 

exponential distribution with a mean of one; (3) The actual 

number of operations of a job is a random variable, equally 

distributed among the integers from one to four; (4) The 

probability of assigning an operation to a machine depends 

on the parameters POi (percentage of operations assigned to 

machine i). These percentages fluctuate between 10% and 

40%. It is also assumed that the first two machines have a 

greater workload; (5) The number of alternative machines for 

an operation varies between one and four; (6) The job arrival 

rate varies so that the overall use of the system ranges 

between 55% and 95%; (7) The value of factor F fluctuates 

between one and ten. 

As mean tardiness and mean flow time in the system are 

the most widely used criteria to measure system performance 

in all manufacturing systems, they are also employed in this 

study. In all, 1100 different control attribute combinations 

were randomly generated. For each combination of attributes, 

mean tardiness and mean flow time values resulting from the 

use of each of the dispatching rules in isolation were 

calculated. Sixteen simulations were actually needed to 

generate a training or test example, as there are four rules for 

each of the decisions to be taken. 

C. The Application of Case-Based Reasoning  

One of the major drawbacks associated with the nearest 

neighbor algorithm is that its ability to classify new cases 

depends on the weights wi that are chosen. Each one of these 

weights is assigned as a function of the importance of the 

corresponding attribute. However the value of each wi is not 

known a priori. To get around this problem, a genetic 

algorithm [20] is designed which determines the optimum 

values of wi, so that classification error is kept to a minimum. 

A scheme of this system, where one can see that the genetic 

algorithm employs the nearest neighbor method to calculate 

the classification error for given wi values, is shown in    Fig. 

2. This error is the fitness for a given set of wi weights. After 

a certain number of generations the genetic algorithm will 

identify the optimum values of wi. The codification used in 

the genetic algorithm proposed uses integer numbers. The 

most appropriate values of population size (N), crossover 

probability (CP), mutation probability (MP), and maximum 

number of generations (NGmax) were also studied. Values 

obtained are: N = 50, CP = 0.7, MP = 0.025 and NGmax = 100. 
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Fig. 2. Method for calculating optimum wi weights. 

 

Table I provides a summary of the results obtained using 

different-sized sets of examples for the criteria of mean 

tardiness and mean flow time. Generally, it can be seen that 

as the number of examples increases, test example error 

(examples that have not previously been dealt with) 

decreases considerably. Table I also shows that test error 

fluctuates between 11% and 9% upwards of 500 examples for 

the criterion of mean tardiness (using the 10-fold 

cross-validation and k=5). Furthermore, for the criterion of 

mean flow time, the nearest neighbor algorithm (k-NN with 

k=1) obtains zero test error upwards of 300 examples. Errors 

for this latter criterion are lower due to there being five 

dispatching rule combinations (SPT+SPT, SPT+NINQ, 

SPT+WINQ, MDD+WINQ, SRPT+WINQ) that are really 

used. In contrast, twelve combinations are used for the 

criterion of mean tardiness. 

 
TABLE I: TEST ERROR USING THE NEAREST NEIGHBOUR ALGORITHM FOR 

THE CRITERIA OF MEAN TARDINESS (MT) AND MEAN FLOW TIME (MFT) 

Number of 

examples 

Test error 

(MT) 

Test error 

(MFT) 

200 16% 2% 

300 15% 0% 

400 14% 0% 

500 11% 0% 

600 11% 0% 

700 10% 0% 

800 10% 0% 

900 10% 0% 

1000 9% 0% 

1100 9% 0% 

 

D. The Application of Support Vector Machines 

The scheduling problem is essentially a multi-class 

classification problem as several dispatching rule 

combinations are employed in the FMS. This study uses the 

one-against-one method to extend the binary SVMs to 

generate the multi-class scheduler since this method is more 

suitable for practical use than other methods [21]. In the same 

way, in this study, the radial basis function (RBF) and the 

polynomial function have been used as kernel functions. 

After several preliminary tests, it has been decided to make 

use of the RBF Kernel since it is the one that shows a better 

performance. Furthermore, by employing the grid search 

technique on the examples, the best performance for the 

SVMs is obtained when C=1,000 and =10. Table II 

provides a summary of the results obtained for the criteria of 

mean tardiness and mean flow time. Generally, it can be seen 
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that as the number of examples increases, test example error 

decreases considerably. Table II also shows that test error 

fluctuates between 11% and 10% upwards of 700 examples 

for the criterion of mean tardiness. Furthermore, for the 

criterion of mean flow time, test error drops to 1% upwards 

of 700 examples. 

 
TABLE II: TEST ERROR USING SVMS FOR THE CRITERIA OF MEAN 

TARDINESS (MT) AND MEAN FLOW TIME (MFT) 

Number of 

examples 

Test error 

(MT) 

Test error 

(MFT) 

200 16% 6% 

300 15% 5% 

400 15% 2% 

500 16% 2% 

600 12% 2% 

700 11% 1% 

800 11% 1% 

900 11% 1% 

1000 10% 1% 

1100 10% 1% 

 

E. Generating New Control Attributes 

On occasions, it is necessary to obtain arithmetical 

combinations of the original attributes to improve the 

scheduling knowledge. But in many cases these 

combinations are not known beforehand, and are only found 

in very simple manufacturing systems after close 

examinations of their simulation results. For these reasons, a 

module was designed which automatically selects the 

„useful‟ combinations of the original attributes by using 

simulation data which originally provided test and training 

examples. To do this, the basic arithmetic operators 

considered are adding, subtracting, multiplying and dividing. 

The pseudo-code for the generator of the new control 

attributes is as follows: 

1) Determination of the combinations of the present 

attributes. 

2) Generation of new training and test examples in the light 

of earlier combinations. 

3) Selection of the „useful‟ combinations, which are in the 

decision tree and in the set of decision rules generated by 

C4.5 [22]. 

4) If the new decision tree and/or the set of decision rules 

has fewer classification errors, go back to step one. If not, 

stop the algorithm. 

However, the decision to continue may also be taken at 

step four because, even though error may not be improved by 

the present iteration, it may well be improved during later 

iteration(s). Fig. 3 provides an overview of this module. 

 Generator of test and 

training examples 

Initial test and 

training examples 

C4.5 algorithm  

Generator of new 

control attributes 

Modified test and 

training examples 

Modified decision tree 

and set of decision rules 

 
Fig. 3. Generator module of new control attributes. 

The proposed module rendered the following „useful‟ 

control attribute combinations for the criterion of mean 

tardiness: U1+U2, U1+U4, U2+U3, U1-U2, U2-U4, U3-U4 

and U3/U4. Table III shows the results obtained for the 

criterion of mean tardiness when the SVMs and the generator 

module of new control attributes were applied. It can be seen 

from the results that test error oscillates between 10% and 8% 

from 600 examples upwards, and that the lowest test error 

was achieved with 1000 and 1100 examples. The proposed 

module is then applied for the criterion of mean flow time, 

and the following combinations of attributes were 

determined to be „useful‟: U1-U2, U3-U4, U1/U2 and U2/U3. 

The Table shows how test error drops to 0% from 700 

examples upwards. If these results are compared with those 

in Table II, an improvement can be seen to exist. Only sets of 

600 examples or more were used, as lower errors are obtained 

upwards of this set size. 

 
TABLE III: TEST ERROR USING SVMS AND THE GENERATOR MODULE OF 

NEW CONTROL ATTRIBUTES FOR THE CRITERIA OF MEAN TARDINESS (MT) 

AND MEAN FLOW TIME (MFT) 

Number of 

examples 

Test error 

(MT) 

Test error 

(MFT) 

600 10% 1% 

700 9% 0% 

800 9% 0% 

900 9% 0% 

1000 8% 0% 

1100 8% 0% 

 
TABLE IV: TEST ERROR USING THE NEAREST NEIGHBOR ALGORITHM AND 

THE GENERATOR MODULE OF NEW CONTROL ATTRIBUTES FOR THE 

CRITERIA OF MEAN TARDINESS (MT) AND MEAN FLOW TIME (MFT) 

Number of 

examples 

Test error 

(MT) 

Test error 

(MFT) 

600 10% 0% 

700 9% 0% 

800 9% 0% 

900 10% 0% 

1000 8% 0% 

1100 8% 0% 

 

Test error using the nearest neighbor algorithm and the 

new attributes generated was likewise calculated. Results are 

shown in Table IV, where it is again clear that classification 

error drops compared to the alternative of using the original 

control attributes. For the criterion of mean tardiness, the 

nearest neighbor algorithm gives a test error of 8% upwards 

1000 examples. Furthermore, for the criterion of mean flow 

time, the nearest neighbor algorithm gives a test error of zero. 

It is observed that test errors obtained from both algorithms 

(SVMs and k-NN) are very similar 

F. Learning-Based Scheduling 

To select the best combination of dispatching rules 

according to the FMS‟s state in real time we must implement 

the scheduling knowledge in the FMS simulation model. 

Selecting the monitoring period is another key question 

because the frequency used to test the control attributes 

determines the performance of the manufacturing system. To 

do this, multiples of the average total processing time for a 

job, which in our particular case are 2.5, 5, 10 and 20 time 

units, are taken (see for example, [5]-[7]). In view of the 

results in the previous section, 1000 examples were used for 

both performance criteria. Five independent replicas of 
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100000 time units were carried out. 

Table V summarizes the results obtained. Mean tardiness 

and mean flow time values in the Table are the average of the 

five replicas. Readability has been improved by showing 

values in the Table that are relative to the lowest mean 

tardiness and mean flow time obtained (these are assigned a 

value of one). The monitoring period chosen was 2.5 time 

units. Table V shows that the best alternative is to employ a 

knowledge-based strategy and that the SVMs generate the 

lowest mean tardiness values. The combinations 

MDD+NINQ and MDD+WINQ are the best of the strategies 

that use a fixed combination of dispatching rules, but their 

mean tardiness values are higher than the SVMs alternative 

by between 14.50% and 15.66%. 

 
TABLE V: MEAN TARDINESS (MT) AND MEAN FLOW TIME (MFT) FOR THE 

PROPOSED STRATEGIES 

Strategy used MT MFT Strategy used MT 
MF

T 

SPT+SPT 
5.491

6 

2,4183 
MDD+NINQ 

1.145

0 

1,256

9 

SPT+NINQ 
1.222

0 

1,0500 
MDD+WINQ 

1.156

6 

1,262

0 

SPT+WINQ 
1.201

1 

1,0476 
MDD+LUS 

2.532

6 

1,864

6 

SPT+LUS 
2.592

0 

1,5277 
SRPT+SPT 

6.145

2 

2,670

6 

EDD+SPT 
4.720

7 

2,6260 
SRPT+NINQ 

1.417

4 

1,147

7 

EDD+NINQ 
1.680

2 

1,3991 
SRPT+WINQ 

1.408

9 

1,148

6 

EDD+WINQ 
1.688

5 

1,4030 
SRPT+LUS 

3.024

7 

1,719

5 

EDD+LUS 
3.295

8 

2,0614 
SVMs 

1.000

0 

1,005

9 

MDD+SPT 
4.762

0 

2,6908 
k-NN 

1,003

9 

1.000

0 

 

Moreover, the k-NN algorithm gives the best results for 

the criterion of mean flow time. Table V also shows that the 

combinations SPT+NINQ and SPT+WINQ generate the least 

mean flow time from amongst the strategies that apply a fixed 

combination of rules. However, mean flow time values are 

greater than the k-NN alternative by between 4.76% and 5%. 

Finally, the SVMs-based scheduling system is compared 

with the other strategies by using ANOVA. The conclusion is 

that this scheduling system stands out above the other 

strategies with a significance level of less than 0.05. The only 

exceptions occur between the k-NN algorithm and the SVMs 

for both criteria. 

 

V. CONCLUSIONS 

An approach for scheduling using SVMs and case-based 

reasoning is proposed in this study. A generator module of 

new control attributes is also incorporated, and this reduces 

test error obtained with the machine learning algorithms 

leading to better performance of the manufacturing system. 

The knowledge-based scheduling system is shown to provide 

the lowest mean tardiness and mean flow time values. Future 

research might focus on using more decision types for the 

proposed FMS. However, the more decision types that are 

used, the more simulations are needed to generate the training 

and test examples. A simulator could usefully be 

incorporated to decide which rule to apply when the 

“scheduling knowledge” provides two or more theoretically 

correct dispatching rules. Finally, a knowledge base 

refinement module could also be added, which would 

automatically modify the knowledge base when major 

changes in the manufacturing system come about.  
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