


Abstract—Dispatching rules are usually applied to schedule

jobs in Flexible Manufacturing Systems (FMSs) dynamically.

Despite their frequent use, one of the drawbacks that they

display is that the state the manufacturing system is in dictates

the level of performance of the rule. As no rule is better than all

the other rules for all system states, it would highly desirable to

know which rule is the most appropriate for each given

condition, and to this end this paper proposes a scheduling

approach that employs Support Vector Machines (SVMs) and

case-based reasoning (CBR). Using these latter techniques, and

by analysing the earlier performance of the system, “scheduling

knowledge” is obtained whereby the right dispatching rule at

each particular moment can be determined. A module that

generates new control attributes is also designed in order to

improve the “scheduling knowledge” that is obtained.

Simulation results show that the proposed approach leads to

significant performance improvements over existing

dispatching rules.

Index Terms—CBR, FMSs, scheduling, simulation, SVMs,

I. INTRODUCTION

One of the most commonly applied solutions to the

scheduling problem in FMSs involves using dispatching

rules, which have been evaluated for performance by many

researchers (see for example, [1]-[3]). Almost all the above

studies point to the fact that rule performance depends on the

criteria that are chosen, and the system‟s configuration and

conditions (utilization level of the system, relative loading,

due date tightness, and so on). It would thus be interesting to

be able to change dispatching rules at the right moment

dynamically.

The literature describes two basic approaches to modify

dispatching rules. The first approach is to select a rule at the

appropriate moment by simulating a set of pre-established

dispatching rules and opting for the one that provides the best

performance (see for example, [4]-[7]). The second approach,

involving artificial intelligence, requires a set of earlier

system simulations (training examples) to determine what the

best rule is for each possible system state. A machine learning

algorithm [8] is trained to acquire knowledge through these

Manuscript received August 1, 2013; revised November 5, 2013. This

work has been supported by the Government of the Principality of Asturias,

through Council of Economy and Employment. (Project Reference:

SV-PA-13-ECOEMP-74).

The authors are with the Department of Business Administration,

Polytechnic School of Engineering (University of Oviedo), Campus de

Viesques s/n, CP 33204, Gijón (Asturias), Spain (e-mail: priore@uniovi.es,

pino@uniovi.es, parreno@uniovi.es, jpuente@uniovi.es,

uo183377@uniovi.es).

training examples, and this knowledge is then used to make

intelligent decisions in real time (see for example, [9]-[11]).

Aytug [12] and Priore [13] provide a review in which

machine learning is applied to solving scheduling problems.

Nevertheless, there are hardly any studies in the literature

that compare the different types of machine learning

algorithms used in scheduling problems. This paper therefore

presents a scheduling approach that uses and compares

SVMs and CBR. To improve the manufacturing system‟s

performance, a new approach is also proposed whereby new

control attributes that are arithmetical combinations of the

original attributes can be determined.

The rest of this paper is organized as follows. Machine

learning algorithms used in this paper are first described. An

approach to scheduling jobs that employs machine learning is

then presented. This is followed by the experimental study,

which describes a new approach to determine new control

attributes from the original ones. The two machine learning

algorithms used are also compared. Finally, the proposed

scheduling approach is compared with the alternative of

using a combination of dispatching rules constantly. A

summary of the results obtained concludes the paper.

II. CASE-BASED REASONING AND SUPPORT VECTOR

MACHINES

The nearest neighbour algorithm is one of the most popular

of CBR algorithms [14]. The formulation of this algorithm,

called NN, or k-NN in the more sophisticated version is

extremely simple. To calculate a new case‟s class using this

method, the distances between the case and the training

examples have to be calculated and the shortest distance

found. The new case‟s class will be the same as the „nearest‟

training example‟s class. The following formulation is

employed to calculate the distance (d(x,e)) between a new

case (x) and a training example (e):

2

1

(,) ()
n

i ix ie

i

d x e w a a


   (1)

Another two more sophisticated versions of the nearest

neighbor algorithm have also been applied in this study. In

the first of the two, an integer value of k of three is employed,

so that the three nearest neighbors are calculated for each x.

Real-Time Scheduling of Flexible Manufacturing Systems

Using Support Vector Machines and Case-Based

Reasoning

Paolo Priore, Raúl Pino, José Parreño, Javier Puente, and Borja Ponte

54DOI: 10.7763/JOEBM.2015.V3.155

where n is the number of attributes considered; aix is the value

of attribute i in case x; aie is the value of attribute i in example

e, and wi is the weight assigned to attribute i as a function of

its importance.

Journal of Economics, Business and Management, Vol. 3, No. 1, January 2015

The class of x is then determined as a function of the class of

the majority of the three neighbors. In the second version, a

value of k of five is used.

Support vector machines [15] were originally designed for

binary classification. Let (x1, y1), (x2, y2), … , (xn, yn) be a

group of data belonging to Class 1 or Class 2, where xiRN

and the associated labels be yi=1 for Class 1and -1 for Class 2

(i=1, … , n). The formulation of SVMs is as follows:





n

i

i

T CwwMin
12

1
 (2)

ni

nibxwy

i

ii
T

i

,...,10

,...,11))((







 (3)

where w is the weight vector; C is the penalty weight;
i are

non-negative slack variables; b is a scalar, and xi are mapped

into a higher dimensional space by a non-linear mapping

function  . Mapping function  needs to satisfy the

following equation:

)()(),(j
T

iji xxxxk  (4)

where),(ji xxk is called kernel function.

Minimizing   ww21 T implies that SVMs tries to maximize

w2 , which represents the margin of separation between

both classes. The data that satisfy the equality in (3) are called

support vectors. Moreover, by adding a set of non-negative

Lagrange multipliers i and i to generate the Lagrangian, the

upper- mentioned constrained optimization problem can be

worked out with the dual form shown below:

),(
2

1

11 1

jij

n

j

iji

n

i

n

i

i xxkyyMax  
 

  (5)

niC

y

i

i

n

i

i

,...,10

0

1








 (6)

Having obtained the support vectors (SVs), the decision

function for an unseen data (x) is as follows:













  bxxkysigny

SVs

iii),( (7)

III. SCHEDULING USING CASE-BASED REASONING AND

SUPPORT VECTOR MACHINES

Two contrasting features need to be fulfilled for a real-time

scheduling system that dynamically modifies dispatching

rules to work properly [16]:

1) Rule selection must take into account a variety of

information about the manufacturing system in real time.

2) Rule selection must be completed fast enough for real

operations not to be delayed.

One way of doing this is to employ some class of

knowledge about the relationship between the manufacturing

system‟s state and the rule to be applied at that moment.

However, one of the most difficult problems is precisely how

this knowledge is to be acquired. Machine learning

algorithms, such as SVMs or CBR, are used to do this.

However, the training examples and the learning algorithm

must be adequate for this knowledge to be useful. Moreover,

in generating the training examples, the attributes selected are

crucial to the performance of the scheduling system [17].

FMS state and

performance

Machine

learning

algorithm

Real time

control system

FMS

Job

scheduling

Training and

test examples

Scheduling

knowledge

Training and

test example

generator

Knowledge

refinement

Simulation

model

Fig. 1. General overview of a knowledge-based scheduling system.

Fig. 1 shows a scheduling system that employs machine

learning. The example generator creates different

manufacturing system states via the simulation model and

choose the best dispatching rule for each particular state. The

machine learning algorithm employs the examples to

generate the knowledge required to make future scheduling

decisions. The real time control system using the „scheduling

knowledge‟, the manufacturing system‟s state and

performance, choose the best dispatching rule for job

scheduling. Further examples may possibly be needed in

order to refine the knowledge about the manufacturing

system depending on the performance of the latter.

IV. EXPERIMENTAL STUDY

A. The Proposed FMS

The selected FMS consists of a loading station, an

unloading station, four machining centres and a material

handling system. Two types of decision are studied in the

FMS proposed. The first is the selection by the machine of

parts assigned to it using the following dispatching rules:

SPT (Shortest Processing Time), EDD (Earliest Due Date),

MDD (Modified Job Due Date), and SRPT (Shortest

Remaining Processing Time). These rules were selected

because of their fine performance in earlier studies (see for

example, [18]). The second type of decision involves the

selection of the machines by the parts, as an operation can be

processed on different machines. The dispatching rules

employed in this FMS are: SPT (Shortest Processing Time),

NINQ (Shortest Queue), WINQ (Work in Queue), and LUS

(Lowest Utilized Station).

55

subject to the constraints:

subject to the constraints:

Journal of Economics, Business and Management, Vol. 3, No. 1, January 2015

B. Generating Training and Test Examples

The control attributes used to describe the manufacturing

system state must first be defined in order to generate training

and test examples. In this particular FMS these are: F, flow

allowance factor which measures due date tightness [19];

NAMO: number of alternative machines for an operation;

MU: mean utilization of the manufacturing system; Ui:

utilization of machine i; WIP: mean number of parts in the

system; RBM: ratio of the utilization of the bottleneck

machine to the mean utilization of the manufacturing system;

RSDU: ratio of the standard deviation of individual machine

utilizations to mean utilization.

The training and test examples needed for the learning

stage are obtained by simulation using the WITNESS

programme. The following suppositions were made to do this:

(1) Jobs arrive at the system following a Poisson distribution;

(2) Processing times for each operation are sampled from an

exponential distribution with a mean of one; (3) The actual

number of operations of a job is a random variable, equally

distributed among the integers from one to four; (4) The

probability of assigning an operation to a machine depends

on the parameters POi (percentage of operations assigned to

machine i). These percentages fluctuate between 10% and

40%. It is also assumed that the first two machines have a

greater workload; (5) The number of alternative machines for

an operation varies between one and four; (6) The job arrival

rate varies so that the overall use of the system ranges

between 55% and 95%; (7) The value of factor F fluctuates

between one and ten.

As mean tardiness and mean flow time in the system are

the most widely used criteria to measure system performance

in all manufacturing systems, they are also employed in this

study. In all, 1100 different control attribute combinations

were randomly generated. For each combination of attributes,

mean tardiness and mean flow time values resulting from the

use of each of the dispatching rules in isolation were

calculated. Sixteen simulations were actually needed to

generate a training or test example, as there are four rules for

each of the decisions to be taken.

C. The Application of Case-Based Reasoning

One of the major drawbacks associated with the nearest

neighbor algorithm is that its ability to classify new cases

depends on the weights wi that are chosen. Each one of these

weights is assigned as a function of the importance of the

corresponding attribute. However the value of each wi is not

known a priori. To get around this problem, a genetic

algorithm [20] is designed which determines the optimum

values of wi, so that classification error is kept to a minimum.

A scheme of this system, where one can see that the genetic

algorithm employs the nearest neighbor method to calculate

the classification error for given wi values, is shown in Fig.

2. This error is the fitness for a given set of wi weights. After

a certain number of generations the genetic algorithm will

identify the optimum values of wi. The codification used in

the genetic algorithm proposed uses integer numbers. The

most appropriate values of population size (N), crossover

probability (CP), mutation probability (MP), and maximum

number of generations (NGmax) were also studied. Values

obtained are: N = 50, CP = 0.7, MP = 0.025 and NGmax = 100.

Genetic

algorithm

Nearest neighbour

algorithm

Validation

error (fitness)

Training example

generator

Training

examples

wi

Fig. 2. Method for calculating optimum wi weights.

Table I provides a summary of the results obtained using

different-sized sets of examples for the criteria of mean

tardiness and mean flow time. Generally, it can be seen that

as the number of examples increases, test example error

(examples that have not previously been dealt with)

decreases considerably. Table I also shows that test error

fluctuates between 11% and 9% upwards of 500 examples for

the criterion of mean tardiness (using the 10-fold

cross-validation and k=5). Furthermore, for the criterion of

mean flow time, the nearest neighbor algorithm (k-NN with

k=1) obtains zero test error upwards of 300 examples. Errors

for this latter criterion are lower due to there being five

dispatching rule combinations (SPT+SPT, SPT+NINQ,

SPT+WINQ, MDD+WINQ, SRPT+WINQ) that are really

used. In contrast, twelve combinations are used for the

criterion of mean tardiness.

TABLE I: TEST ERROR USING THE NEAREST NEIGHBOUR ALGORITHM FOR

THE CRITERIA OF MEAN TARDINESS (MT) AND MEAN FLOW TIME (MFT)

Number of

examples

Test error

(MT)

Test error

(MFT)

200 16% 2%

300 15% 0%

400 14% 0%

500 11% 0%

600 11% 0%

700 10% 0%

800 10% 0%

900 10% 0%

1000 9% 0%

1100 9% 0%

D. The Application of Support Vector Machines

The scheduling problem is essentially a multi-class

classification problem as several dispatching rule

combinations are employed in the FMS. This study uses the

one-against-one method to extend the binary SVMs to

generate the multi-class scheduler since this method is more

suitable for practical use than other methods [21]. In the same

way, in this study, the radial basis function (RBF) and the

polynomial function have been used as kernel functions.

After several preliminary tests, it has been decided to make

use of the RBF Kernel since it is the one that shows a better

performance. Furthermore, by employing the grid search

technique on the examples, the best performance for the

SVMs is obtained when C=1,000 and =10. Table II

provides a summary of the results obtained for the criteria of

mean tardiness and mean flow time. Generally, it can be seen

56

Journal of Economics, Business and Management, Vol. 3, No. 1, January 2015

that as the number of examples increases, test example error

decreases considerably. Table II also shows that test error

fluctuates between 11% and 10% upwards of 700 examples

for the criterion of mean tardiness. Furthermore, for the

criterion of mean flow time, test error drops to 1% upwards

of 700 examples.

TABLE II: TEST ERROR USING SVMS FOR THE CRITERIA OF MEAN

TARDINESS (MT) AND MEAN FLOW TIME (MFT)

Number of

examples

Test error

(MT)

Test error

(MFT)

200 16% 6%

300 15% 5%

400 15% 2%

500 16% 2%

600 12% 2%

700 11% 1%

800 11% 1%

900 11% 1%

1000 10% 1%

1100 10% 1%

E. Generating New Control Attributes

On occasions, it is necessary to obtain arithmetical

combinations of the original attributes to improve the

scheduling knowledge. But in many cases these

combinations are not known beforehand, and are only found

in very simple manufacturing systems after close

examinations of their simulation results. For these reasons, a

module was designed which automatically selects the

„useful‟ combinations of the original attributes by using

simulation data which originally provided test and training

examples. To do this, the basic arithmetic operators

considered are adding, subtracting, multiplying and dividing.

The pseudo-code for the generator of the new control

attributes is as follows:

1) Determination of the combinations of the present

attributes.

2) Generation of new training and test examples in the light

of earlier combinations.

3) Selection of the „useful‟ combinations, which are in the

decision tree and in the set of decision rules generated by

C4.5 [22].

4) If the new decision tree and/or the set of decision rules

has fewer classification errors, go back to step one. If not,

stop the algorithm.

However, the decision to continue may also be taken at

step four because, even though error may not be improved by

the present iteration, it may well be improved during later

iteration(s). Fig. 3 provides an overview of this module.

 Generator of test and

training examples

Initial test and

training examples

C4.5 algorithm

Generator of new

control attributes

Modified test and

training examples

Modified decision tree

and set of decision rules

Fig. 3. Generator module of new control attributes.

The proposed module rendered the following „useful‟

control attribute combinations for the criterion of mean

tardiness: U1+U2, U1+U4, U2+U3, U1-U2, U2-U4, U3-U4

and U3/U4. Table III shows the results obtained for the

criterion of mean tardiness when the SVMs and the generator

module of new control attributes were applied. It can be seen

from the results that test error oscillates between 10% and 8%

from 600 examples upwards, and that the lowest test error

was achieved with 1000 and 1100 examples. The proposed

module is then applied for the criterion of mean flow time,

and the following combinations of attributes were

determined to be „useful‟: U1-U2, U3-U4, U1/U2 and U2/U3.

The Table shows how test error drops to 0% from 700

examples upwards. If these results are compared with those

in Table II, an improvement can be seen to exist. Only sets of

600 examples or more were used, as lower errors are obtained

upwards of this set size.

TABLE III: TEST ERROR USING SVMS AND THE GENERATOR MODULE OF

NEW CONTROL ATTRIBUTES FOR THE CRITERIA OF MEAN TARDINESS (MT)

AND MEAN FLOW TIME (MFT)

Number of

examples

Test error

(MT)

Test error

(MFT)

600 10% 1%

700 9% 0%

800 9% 0%

900 9% 0%

1000 8% 0%

1100 8% 0%

TABLE IV: TEST ERROR USING THE NEAREST NEIGHBOR ALGORITHM AND

THE GENERATOR MODULE OF NEW CONTROL ATTRIBUTES FOR THE

CRITERIA OF MEAN TARDINESS (MT) AND MEAN FLOW TIME (MFT)

Number of

examples

Test error

(MT)

Test error

(MFT)

600 10% 0%

700 9% 0%

800 9% 0%

900 10% 0%

1000 8% 0%

1100 8% 0%

Test error using the nearest neighbor algorithm and the

new attributes generated was likewise calculated. Results are

shown in Table IV, where it is again clear that classification

error drops compared to the alternative of using the original

control attributes. For the criterion of mean tardiness, the

nearest neighbor algorithm gives a test error of 8% upwards

1000 examples. Furthermore, for the criterion of mean flow

time, the nearest neighbor algorithm gives a test error of zero.

It is observed that test errors obtained from both algorithms

(SVMs and k-NN) are very similar

F. Learning-Based Scheduling

To select the best combination of dispatching rules

according to the FMS‟s state in real time we must implement

the scheduling knowledge in the FMS simulation model.

Selecting the monitoring period is another key question

because the frequency used to test the control attributes

determines the performance of the manufacturing system. To

do this, multiples of the average total processing time for a

job, which in our particular case are 2.5, 5, 10 and 20 time

units, are taken (see for example, [5]-[7]). In view of the

results in the previous section, 1000 examples were used for

both performance criteria. Five independent replicas of

57

Journal of Economics, Business and Management, Vol. 3, No. 1, January 2015

100000 time units were carried out.

Table V summarizes the results obtained. Mean tardiness

and mean flow time values in the Table are the average of the

five replicas. Readability has been improved by showing

values in the Table that are relative to the lowest mean

tardiness and mean flow time obtained (these are assigned a

value of one). The monitoring period chosen was 2.5 time

units. Table V shows that the best alternative is to employ a

knowledge-based strategy and that the SVMs generate the

lowest mean tardiness values. The combinations

MDD+NINQ and MDD+WINQ are the best of the strategies

that use a fixed combination of dispatching rules, but their

mean tardiness values are higher than the SVMs alternative

by between 14.50% and 15.66%.

TABLE V: MEAN TARDINESS (MT) AND MEAN FLOW TIME (MFT) FOR THE

PROPOSED STRATEGIES

Strategy used MT MFT Strategy used MT
MF

T

SPT+SPT
5.491

6

2,4183
MDD+NINQ

1.145

0

1,256

9

SPT+NINQ
1.222

0

1,0500
MDD+WINQ

1.156

6

1,262

0

SPT+WINQ
1.201

1

1,0476
MDD+LUS

2.532

6

1,864

6

SPT+LUS
2.592

0

1,5277
SRPT+SPT

6.145

2

2,670

6

EDD+SPT
4.720

7

2,6260
SRPT+NINQ

1.417

4

1,147

7

EDD+NINQ
1.680

2

1,3991
SRPT+WINQ

1.408

9

1,148

6

EDD+WINQ
1.688

5

1,4030
SRPT+LUS

3.024

7

1,719

5

EDD+LUS
3.295

8

2,0614
SVMs

1.000

0

1,005

9

MDD+SPT
4.762

0

2,6908
k-NN

1,003

9

1.000

0

Moreover, the k-NN algorithm gives the best results for

the criterion of mean flow time. Table V also shows that the

combinations SPT+NINQ and SPT+WINQ generate the least

mean flow time from amongst the strategies that apply a fixed

combination of rules. However, mean flow time values are

greater than the k-NN alternative by between 4.76% and 5%.

Finally, the SVMs-based scheduling system is compared

with the other strategies by using ANOVA. The conclusion is

that this scheduling system stands out above the other

strategies with a significance level of less than 0.05. The only

exceptions occur between the k-NN algorithm and the SVMs

for both criteria.

V. CONCLUSIONS

An approach for scheduling using SVMs and case-based

reasoning is proposed in this study. A generator module of

new control attributes is also incorporated, and this reduces

test error obtained with the machine learning algorithms

leading to better performance of the manufacturing system.

The knowledge-based scheduling system is shown to provide

the lowest mean tardiness and mean flow time values. Future

research might focus on using more decision types for the

proposed FMS. However, the more decision types that are

used, the more simulations are needed to generate the training

and test examples. A simulator could usefully be

incorporated to decide which rule to apply when the

“scheduling knowledge” provides two or more theoretically

correct dispatching rules. Finally, a knowledge base

refinement module could also be added, which would

automatically modify the knowledge base when major

changes in the manufacturing system come about.

REFERENCES

[1] M. Montazeri and L. N. W. Wassenhove, “Analysis of scheduling rules

for an FMS,” International Journal of Production Research, vol. 28, pp.

785-802, 1990.

[2] K. E. Stecke and J. Solberg, “Loading and control policies for a flexible

manufacturing system,” International Journal of Production Research,

vol. 19, pp. 481-490, 1981.

[3] L. L. Tang, Y. Yih, and C. Y. Liu, “A study on decision rules of a

scheduling model in an FMS,” Computers in Industry, vol. 22, pp. 1-13,

1993.

[4] N. Ishii and J. Talavage, “A transient-based real-time scheduling

algorithm in FMS,” International Journal of Production Research, vol.

29, pp. 2501-2520, 1991.

[5] K. C. Jeong and Y. D. Kim, “A real-time scheduling mechanism for a

flexible manufacturing system: Using simulation and dispatching

rules,” International Journal of Production Research, vol. 36, pp.

2609-2626, 1998.

[6] M. H. Kim and Y. D. Kim, “Simulation-based real-time scheduling in a

flexible manufacturing system,” Journal of Manufacturing Systems,

vol. 13, pp. 85-93, 1994.

[7] S. Y. D. Wu and R. A. Wysk, “An application of discrete-event

simulation to on-line control and scheduling in flexible

manufacturing,” International Journal of Production Research, vol. 27,

pp. 1603-1623, 1989.

[8] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine Learning,

An Artificial Intelligence Approach, Tioga Press, Palo Alto, CA, 1983.

[9] P. Priore, D. de la Fuente, R. Pino, and J. Puente, “Dynamic scheduling

of flexible manufacturing systems using neural networks and inductive

learning,” Integrated Manufacturing Systems, vol. 14, pp. 160-168,

2003.

[10] Y. R. Shiue, R. S. Guh, and T. Y. Tseng, “GA-based learning bias

selection mechanism for real-time scheduling systems,” Expert Systems

with Applications, vol. 36, pp. 11451-11460, 2009.

[11] Y. R. Shiue, R. S. Guh, and K. C. Lee, “Study of SOM-based intelligent

multi-controller for real-time scheduling,” Applied Soft Computing, vol.

11, pp. 4569-4580, 2011.

[12] H. Aytug, S. Bhattacharyya, G. J. Koehler, and J. L. Snowdon, “A

review of machine learning in scheduling”, IEEE Transactions on

Engineering Management, vol. 41, pp. 165-171, 1994.

[13] P. Priore, D. de la Fuente, A. Gómez, and J. Puente, “A review of

machine learning in dynamic scheduling of flexible manufacturing

systems,” Artificial Intelligence for Engineering Design, Analysis and

Manufacturing, vol. 15, pp. 251-263, 2001.

[14] D. W. Aha, “Tolerating noisy, irrelevant and novel attributes in

instance-based learning algorithms,” International Journal of

Man-Machine Studies, vol. 36, pp. 267-287, 1992.

[15] C. Cortes and V. Vapnik, “Support-vector network,” Machine

Learning, vol. 20, pp. 273-297, 1995.

[16] S. Nakasuka and T. Yoshida, “Dynamic scheduling system utilizing

machine learning as a knowledge acquisition tool,” International

Journal of Production Research, vol. 30, pp. 411-431, 1992.

[17] C. C. Chen and Y. Yih, “Identifying attributes for knowledge-based

development in dynamic scheduling environments,” International

Journal of Production Research, vol. 34, pp. 1739-1755, 1996.

[18] R. M. O. keefe and T. Kasirajan, “Interaction between dispatching and

next station selection rules in a dedicated flexible manufacturing

system,” International Journal of Production Research, vol. 30, pp.

1753-1772, 1992.

[19] K. R. Baker, “Sequencing rules and due-date assignments in a job

shop,” Management Science, vol. 30, pp. 1093-1103, 1984.

[20] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and

Machine Learning, Addison Wesley, Reading, MA, 1989.

[21] C. W. Hsu and C. J. Lin, “A comparison of methods for multi-class

support vector machines,” IEEE Transactions on Neural Networks, vol.

13, pp. 415-425, 2002.

[22] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan

Kaufmann Publishers, San Mateo, CA, 1993.

58

Journal of Economics, Business and Management, Vol. 3, No. 1, January 2015

Paolo Priore graduated in industrial engineering in

1991 at University of Oviedo and gained his Ph. D.

from the University of Oviedo in 2001. He is

currently professor at the GijónPolytechnic School of

Engineering. His research interests include machine

learning applications in production problems,

simulation, and manufacturing. He has published a

great number of research papers in a number of

leading journals such as: Applied Soft Computing,

Engineering Applications of Artificial Intelligence, Applied Artificial

Intelligence, Computers & Industrial Engineering, Artificial Intelligence for

Engineering Design, Analysis and Manufacturing, etc.

Raúl Pino graduated in Industrial Engineering in

1992 at University of Oviedo (Spain), and gained his

Ph. D. from the University of Oviedo in 2000. He is

currently professor at the Gijón Polytechnic School

of Engineering. His current research interests are in

the areas of artificial intelligence, forecasting,

simulation and manufacturing. He has published a

great number of research papers in a number of

leading journals.

José Parreño graduated in industrial engineering in

1991 at University of Oviedo and gained his Ph. D.

from the University of Oviedo in 2002. He is

currently professor at the Gijón Polytechnic School

of Engineering. His research interests include

forecasting and artificial intelligence applications in

production problems, simulation, and

manufacturing. He has published research papers in a

number of leading journals such as: Journal of

Mechanical Engineering, Engineering Applications of Artificial Intelligence

and Applied Artificial Intelligence.

Javier Puente is an associate professor of Operations

Management at the University of Oviedo (Spain). His

key research topics include: Applied Artificial

Intelligence, Production Planning and Control,

Quality of service and Supply Chain Management. He

has published a great number of research papers in a

number of leading journals such as: International

Journal of Production Economics, Applied Artificial

Intelligence, Computers & Industrial Engineering,

Applied Soft Computing or Artificial Intelligence in Medicine among others.

He also has published in several international conferences: IC-AI, GECCO,

POMS, EUSFLAT. He has been usual referee of several international

journals and has taken part of the scientific committee in some international

conferences.

Borja Ponte is a Ph.D. student at the Department of

Business Administration of the University of Oviedo.

His Master's Thesis "The Bullwhip Effect in Supply

Chains: An Approach based on Artificial Intelligence

Techniques", qualified with honors, represents its

introduction into the world of research, trying to

combine the fields of Logistics and Multiagent

Systems. He has presented papers at two international

conferences, and he has participated in the work

presented in two others.

59

Journal of Economics, Business and Management, Vol. 3, No. 1, January 2015

