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Abstract—In this paper, a Hidden Markov Model is 

employed to fit global, U.S. and European annual corporate 

default counts. The Expectation-Maximization algorithm is 

applied to calibrate all parameters while the standard errors of 

the estimated parameters are conducted by Monte Carlo 

method. Parametric bootstraps are used to compute the 

nonlinear forecasts. The empirical results show that the Hidden 

Markov model is useful in distinguishing the periods of 

expansion from the periods of recession (relative to the points 

identified by the NBER). Moreover, it obtains relatively 

satisfactory forecasts especially in capturing the state switching 

while incorporating more original observations. 

 

Index Terms—Corporate default counts, 

expectation-maximization algorithm, hidden Markov model, 

parametric bootstrap. 

 

I. INTRODUCTION 

The issue regarding estimating potential risk levels and 

forecasting default events of financial assets has increasingly 

became the interest of many financial, economic, and 

mathematical researchers in contemporary society. 

Previously, due to the achievement of Moody [1], the 

Binomial Expansion Technique (BET) was created to 

estimate the expected loss of collateralized bond and loan 

obligations (CBOs and CLOs). However, it is ideal that there 

exists a pure binomial distribution with independent defaults. 

With the introduction of diversity score which is used to 

distinguish a smaller portfolio of independent and 

homogenous financial assets, it is easier to assume that all 

these financial assets (bonds and loans) have the same default 

probability and default independently, resulting in the 

binominal distribution regarding the quantity of observed 

default events in single time stage.  More importantly, as 

mentioned by Düllmann [2], some shortages of BET method 

can be optimized to some extent by the model created by 

Davis and Lo [3]. In particular, it was related to infectious 

defaults which increase the default risk of other financial 

assets. There are two types of risk (normal risk and enhanced 

risk, respectively), and the latter risk level is enhanced by 

multiplying infectious factor k. In this case, the similar 

approach named Hidden Markov Model will be used to detect 

risk periods in the economy, and related parameters are 

estimated by Expectation-Maximization algorithm (EM 

algorithm). More importantly, what this paper pays more 

attention to concerns corporate default counts forecast, which 

is different from emphasizing on estimation process and 

detection of expansion and recession periods in previous 

 

researches. The forecast process is achieved by the 

parametric bootstrap approach according to Tsay [4], which 

is used to perform the nonlinear forecasts. 

The content of this paper is divided into six aspects. 

Detailed methods or approaches utilized in this article will be 

included and explained in Section II and the simulation part 

Section III is to test the effectiveness of parameter estimation. 

Then imperial analysis in Section IV incorporates some small 

related aspects, data introduction, for example.  Section V 

sketches the final conclusion, and the further improvement 

for this paper is offered in Section VI. 
 

II. METHODOLOGY 

A. Model Introduction and Description 

In this paper, a two-state discrete HMM is used, and two 

hidden states are normal risk state and enhanced risk state, 

respectively, denoting as 1 and 2. According to BET 

published by Moody’s Investors Service [1], in this case, the 

default counts N in state 1 and 2 follow different binomial 

distributions with the parameters 𝑃1 and 𝑃2, representing the 

observed default probabilities in each state. 

 

1 1 1=( ) (1 )n N n N

NP N P P （ ）                    (1) 

 

2 2 2( ) ( ) (1 )n N n N

NP N P P                   (2) 

 

where n denotes total number of surviving financial assets 

(bonds or loans) in the market. More specially, the parameter 

𝑃2 is obtained by multiplying 𝑃1 with one factor 𝑘  𝑘 ≥ 1 , 
which describes enhanced effect in state 2. 

Moreover, besides the number of states s (2 states in this 

paper) and the observations per state, the parameters of an 

HMM also include initial state distribution 𝜋 = 𝑃[𝑞1 = 𝑆𝑖] 
which means the probability regarding the initial observation 

occurrence in state i, an observation symbol probability 

distribution 𝐵 = {𝑏𝑗  𝑚 }  to represent the probability of 

observing m events on state j (two binominal distributions 

here), and the state transition matrix 𝐴 = {𝑎𝑖𝑗 }  which 

describes the transition probability from state i to state j [5]. 

More specifically, in our approach, the parameters to 

describe the constant transition matrix are demonstrated as 

follows: 

 

                            (3) 

 

where 𝑎11 , 𝑎22 represent the probability of retaining in state 1 

and 2 respectively. Hence, complete parameters utilized in 

our two-state HMM are summarized as 𝜆 (𝐴, 𝐵, 𝜋). 
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B. Parameter Estimation 

Given the real observation sequence 𝑂 = 𝑂1𝑂2 ⋯⋯𝑂𝑇 , 

the challenges are to estimate HMM parameters (𝐴, 𝐵, 𝑘) and 

maximize  𝑃(𝑂|𝜆) . In 1989, Rabiner recommended one 

efficient method named EM algorithm to cope with problems, 

which is utilized to calculate the maximum likelihood value 

when there is unobserved variables [5]. In forward-backward 

procedure, there are two separate variables containing 

forward variable   𝛼𝑡(𝑖)  and backward variable 𝛽𝑡 𝑖 . In 

detail, 𝑃(𝑂1𝑂2 ⋯𝑂𝑡 , 𝑞𝑡 = 𝑆𝑖|𝜆)  can be defined as   𝛼𝑡(𝑖) 

which represents given 𝜆 , the probability of the partial 

observation sequence when reaching state 𝑆𝑖  at time t. 

Similarly, backward variable 

𝛽𝑡 𝑖 = 𝑃(𝑂𝑡+1𝑂𝑡+2 ⋯𝑂𝑇 , 𝑞𝑡 = 𝑆𝑖  denotes the probability of 

the rest observation sequence from t+1 to the final after 

arriving in state 𝑆𝑖  at time t with given model parameters 𝜆. 

In order to compute the probability of arriving state 𝑆𝑖  at time 

t (𝛾𝑡(𝑖)) and transition probability 𝑎𝑖𝑗   from state 𝑆𝑖  at time t 

to state 𝑆𝑗  at time t+1 (𝜉𝑡(𝑖𝑗)), they can be defined in the 

following form: 
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C. Forecasts Based on HMM (Parametric Bootstrap) 

Unlike the non-parametric bootstrap, the parametric 

bootstrap is used to draw samples from a distribution formed 

from a sample set by a model [6]. In this case, nonlinear 

forecasts are calculated by the parametric bootstrap. 

Referring to Tsay [4], the values of 𝑥𝑇+1, 𝑥𝑇+2 ⋯𝑥𝑇+𝑙  are 

computed by drawing new realizations from specified 

distribution of the model if estimated parameters are given, 

where T and 𝑙 (𝑙 > 0) represent the forecast origin and the 

forecast horizon, respectively. Additionally, by the model, 

the original observations, the forecast 

of 𝑥𝑇+1, 𝑥𝑇+2 ⋯𝑥𝑇+𝑙−1and repeating the procedure (M times), 

M realizations of 𝑥𝑇+𝑙  can be obtained, and then the forecast 

of 𝑥𝑇+𝑙  is regarded as the average of M values drawn before. 

In this paper, the forecasting process works in the 

following steps. 

1) Start from forecast origin T and the record before T is 

the first data set to forecast. 

2) Perform one-step ahead forecast. In detail, the start 

point is to calculate the expected smoothed probabilities 

in T+1 for each risk level (    𝛾𝑇+1 1  and    𝛾𝑇+1 2 ) 

given estimated parameters generated from all available 

data before T. After that, it is essential to randomly draw 

the default counts from two risk levels and compute the 

expectation of default count in T+1 by multiplying the 

  𝛾𝑇+1 1  and   𝛾𝑇+1 2  respectively. By reduplicative 

M realizations (1000 in this trial), the forecasting 

default count in 𝑇 + 1 is the sample average of 1000 

expected default counts calculated before. The general 

forecast process is calculated below, assuming 

𝑋𝑇+𝑙
𝑗  1  𝑎𝑛𝑑  𝑋𝑇+𝑙

𝑗  2  (     𝑗 = 1 ⋯𝑀,  𝑙 > 0 ) are j 

realization for  𝑇 + 𝑙 drew from state 1 and 2 at j times: 

                      𝛾𝑇+𝑙 1 = 𝛾𝑇+𝑙−1 1 ∗ 𝑎11 + 𝛾𝑇+𝑙 2 ∗ 𝑎21            (6) 

                      𝛾𝑇+𝑙 2 = 𝛾𝑇+𝑙−1 1 ∗ 𝑎12 + 𝛾𝑇+𝑙 2 ∗ 𝑎22             (7) 

𝑋𝑇+𝑙
𝑗

= 𝑋𝑇+𝑙
𝑗  1 ∗  𝛾𝑇+𝑙 1 + 𝑋𝑇+𝑙

𝑗  2 ∗  𝛾𝑇+𝑙 2   𝑗 = 1 ⋯𝑀    (8)  

                    𝑋𝑇+𝑙 =
1

𝑀
 𝑋𝑇+𝑙

𝑗𝑀
𝑗=1         𝑗 = 1 ⋯𝑀                  (9) 

 

3) Incorporate one more real default count each time 

according to the order. The next is to re-estimate related 

parameters for each data set and repeat forecasting 

process until all the data are utilized.  

Data length in varied regions for forecast is different. The 

forecast origin for global default counts is T=81 covering the 

period 1920-2000. Due to the limited data collected about 

U.S. and Europe, their forecast origins are quite shorter than 

globe’s (T=29 from1981 to 2009 and T=24 from 1986 to2009, 

respectively). 

D. Covariance Matrix 

The standard errors of the estimated parameters 

( 𝑎11 , 𝑎22 , 𝑃1, 𝑘)  are computed by Monte Carlo Method, 

which is implemented in the Matlab. In particular, the square 

root of the values on the diagonal of the covariance matrix 

concerned is the standard errors of the estimated parameters 

mentioned before.  

The initial step is to generate an observation sequence by 

prior estimated EM estimators, and repeat this process t times. 

Next, for each generated sequence, we need to re-estimate 

parameters (𝑎11 , 𝑎22 , 𝑃1, 𝑘). Finally, the covariance matrix is 

computed below: 

 

C =
1

𝑡−1
  𝜃𝑖 − 𝜃  

′
∙  𝜃𝑖 − 𝜃                           𝑡

𝑖=1  (10) 

   𝜃 =
1

𝑡
 𝜃𝑡

𝑖=1                                     (11) 

where 𝜃 is a vector containing four estimated parameters for 

each generation. 

 
TABLE I: SIMULATION RESULTS 

 

 

III. SIMULATION RESULTS 

In order to testify the effectiveness of parameter estimation, 

referring to Davis [7], Zhu and Cheng [8], the similar method 

will be used in this paper. The first step is to simulate 100 

default counts observations within one n=1000 bond 

portfolio. Meanwhile, two sets of initial parameters are chose 
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and applied in the EM algorithm. The detailed results are 

demonstrated in the Table I below, which satisfyingly agrees 

with the true parameters and supports the effectiveness of 

parameter estimation. (The brackets here represent the 

standard errors regarding corresponding estimated 

parameters) 

 

 

Fig. 1. Simulated default counts, simulated and estimated risk periods for 1st 

set of initial parameters. The solid bar demonstrates risk level in state 2. 

Hence, the algorithm is satisfying to detect enhanced risk periods. 

 

IV. IMPERIAL ANALYSIS 

A. Data Description 

The data sources used in this paper consist of Moody’s and 

Standard & Poor’s annual default studies.  

The global data are extracted from Exhibit 16 and Exhibit 

30 of Moody’s annual default study [9] which include the 

number of annual global cooperate issuer default events and 

annual issuer-weighted corporate default rates from 1920 to 

2012. Here we just use actual global default counts from 1920 

to 2000 to perform estimation, and the rest data started from 

2001 will be applied to forecast. In particular, it should be 

noticed that all the default counts in Moody’s report only 

cover Moody’s all-rated cooperate issuers. 

As for Europe default counts, it covers the period 

1986-2012 in this paper. European default rates are collected 

from Exhibit 17 of Moody’s European Corporate Default and 

Recovery Rates [10], and corresponding default counts come 

from Moody’s annual default study (Excel data), Exhibit 18 

[11]. 

The United States default counts derive from The Standard 

& Poor’s annual U.S. corporate default studies Table I,  

covering U.S. default counts from 1981 to 2012 [12]. 

Meanwhile, these tables also offer corresponding annual 

default rate. 

Additionally, U.S. and European default counts ranging 

from 1981 to 2009 are used to perform the estimation process 

and the forecast point begins in 2010, due to the short data 

length provided by Moody’s and Standard & Poor’s annual 

default studies. 

Data regarding U.S. business cycle are collected from the 

National Bureau of Economic Research (NBER) [13], which 

is plotted in Fig. 3 roughly. 

B. Default Definition 

The statistical data collected from Moody’s and Standard 

& Poor’s annual default studies implements different default 

definitions (the difference is described in the annual U.S. 

Corporate Default Study And Rating transitions [12] and 

Moody’s Rating Symbols and Definitions [14]). Moreover, 

the definition of issuer-weighted default rate is explained in 

the appendix of Latin American Corporate Default and 

Recovery Rates [15] 

C. Estimation Results 

The global, U.S. and European estimation results are 

demonstrated in the Table II with standard errors within the 

brackets. 

 
TABLE II: ESTIMATED RESULTS OF GLOBE U.S., AND EUROPE  

 

 

As can be seen from the Table II, the estimation results are 

quite reliable and stable. Fig. 2- Fig. 4 below demonstrate real 

observations in globe, U.S. and Europe, along with estimated 

state switching process. It is clear that the risk states 

estimated by our model are effective to detect enhanced risk 

periods, especially in U.S., which capture the real business 

cycle roughly. 

 

 

Fig. 2. Real global default counts with estimated risk periods. 

 

 

Fig. 3. Real U.S. default counts and estimated risk periods along with U.S. 

business cycle. 

 

 

Fig. 4. Real European default counts with estimated risk periods. 

495

Journal of Economics, Business and Management, Vol. 3, No. 5, May 2015



  

D. Forecast results and Analysis 

As mentioned in the previous section, the parametric 

bootstrap will be utilized to predict the global default counts 

from 2001 to 2012, U.S. and European default counts from 

2010 to 2012.  

The Fig. 5 below sketches the comparison of observed 

global default counts with their forecasts from 2001 to 2012. 

Moreover, the Table III contains two sets of smoothed 

probabilities in state 1 from 2001 to 2012, one is obtained 

from applying all available real global default counts from 

1920 to 2012, and the other is from rolling estimation process 

while incorporating a new observation. The detailed data 

record regarding the comparison between the observed 

default counts and corresponding forecasts is included in the 

Table III as well. 

 

 

Fig. 5. Global default counts and forecasts. 

 

TABLE III: GLOBAL SMOOTHED PROBABILITIES AND FORECAST RESULTS 

 

 

While comparing the real global annual default counts 

with corresponding forecasts from 2001 to 2012, it is 

interesting to find that there exist large differences between 

them. Actually, it is reasonable that about 75% of probability 

that the real default counts in 2001 remains at enhanced risk 

state, which results from the estimated parameter 𝑎22 = 0.75 

computed by the data from 1920 to 2000. Our forecast 

smoothed probabilities are the weighted mean of being in two 

states, however, the real case is that observations only occur 

in one state, which results in such a large difference between 

the real and predicting case. Obviously, the results can be 

remedied by incorporating more original data. It is clear that 

the smoothed probabilities over time obtained by one-step 

ahead forecast and the parametric bootstrap approach 

approximately follow the tendency or fluctuation of real 

global default counts record, which reflects risk state 

switching. 

As for U.S., The similar Fig. 6 and Table IV reflect its 

default counts, corresponding forecasts and two sets of 

smoothed probabilities in normal state ranging from 2010 to 

2012. It should be noticed that two sets of smoothed 

probabilities consist of outcomes computed by whole annual 

U.S. default counts from 1981 to 2012 and one-step ahead 

forecast process at each rolling step since 2009. 

More satisfying results can be obtained from U.S. default 

observations from 1981 to 2012. In detail, the transition 

probability 𝑎22 calculated by U.S. data covering the period 

1981 - 2009 is 0.75 and the observation in 2009 is estimated 

at state 2, which lead to 75% of probability that the real 

default count in 2010 still remains at state 2. More 

importantly, the forecast smoothed probabilities are the 

weighted mean of being in two states, however, the real 

observations only occur in one state, which results in such a 

large difference between the observed default counts and 

forecasts. However, with more data, our results will be 

modified effectively. Obviously, the smoothed probabilities 

computed by rolling re-estimates process approximately 

catches the switch between normal and enhanced risk states.  

 

Fig. 6. U.S. default counts and forecasts. 

 

TABLE IV: U.S. SMOOTHED PROBABILITIES AND FORECAST RESULTS 

 

 

 

Fig. 7. European default counts and forecast. 
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TABLE V: EUROPEAN SMOOTHED PROBABILITIES AND FORECAST RESULTS 

 

 

The European outcomes are included in the Fig. 7 and 

Table V. 

Although there are large differences between real 

European default counts and forecasts, what our model 

estimate can generally catch the state switching, and show 

that there is a higher probability remaining in recession 

periods (enhanced risk state) since 2010. 
 

V. CONCLUSION 

In this paper, a two-state Hidden Markov Model is used to 

fit real data in the macro-economy (Globe) and two 

geographic regions (U.S. and Europe). Related parameters 

are obtained by EM algorithm. In our case, the U.S. estimated 

enhanced risk periods capture and follow most recession 

periods in its real business cycle, which is beneficial for 

proving the effectiveness of our model. For forecast 

perspective, the parametric bootstrap is to apply in rolling 

one-step ahead forecast. Though there are relatively large 

differences between the real observations and their forecasts, 

generally, the approach used in this article captures real state 

switching effectively and forecasts accurately while 

incorporating more original data. 
 

VI. FURTHER WORKS 

Although the model applied in this article can detect 

enhanced risk periods and capture risk switching, it still 

needs further works to improve. In detail, firstly, we do not 

consider cross regional default counts correlation by 

assuming that they are independent. However, in reality, the 

global default events in a certain year may trigger the more 

default events in other geographic regions. Next, the data 

length is one of our major shortages as well, especially the 

European default counts only covering from 1986 to 2012, 

which may cause inaccurate estimation and forecast. 

Moreover, somehow Markov Chain includes autocorrelation 

function (ACF), where the next observation depends only on 

the current observation. There is one alternative approach 

named integer-valued autoregressive model (INAR) 

introduced by McKenzie, Alzaid and Al-osh [16], which may 

improve our method, because we find the significant ACF at 

lag 1, 2, and 3 while applying global default counts from 

1920-2000. 
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