Feasibility of a Monetary Union in the East African Community: A Structural Vector Autoregression Model

Kamaludin Ahmed Sheikh, Zarina Yusuf, and Mohamed Aslam

Abstract—The aim of this paper is to assess the suitability of a monetary union among the East African Community (EAC) members. EAC consists of five neighboring countries situated in the eastern part of Africa, which include Burundi, Kenya, Rwanda, Tanzania, and Uganda. The methodological approach of this paper is based on AD-AS framework. The study focuses on the symmetry and asymmetry of shocks affecting EAC countries; a four-variable structural vector auto-regression model was used to identify four types of shocks: global supply shock, domestic supply shock, monetary supply shock, and domestic demand shocks. After identifying the shocks, we considered cross country correlation analysis, analysis of variance, and impulse response analysis. The results of correlation shock analysis revealed that domestic demand shocks and external supply shocks were dominant in the region, while domestic supply shocks and monetary shocks were less correlated and asymmetry in the region. In conclusion, the study results did not show strong support for the formation of a currency union in the region at present, but nevertheless gives some hope to a successful monetary union in the future.

Index Terms—Optimum currency areas, SVAR, monetary union, East African economies.

I. INTRODUCTION

In recent years, the pursuit and interest of monetary union has become an important phenomenon in economic development. Many countries in the world have the incentive to form monetary unions with the intention of enjoying the benefits of increased economic integration and to avoid the monetary domination of larger countries [1]. Like other regional economic blocks, the East African Community (EAC) had been planning economic integration since 1999. EAC consists of five neighboring countries, situated in the eastern region of Africa (Burundi, Kenya, Rwanda, Tanzania and Uganda) [2]. EAC regional block is unique in Africa as it is the only regional block in Africa which had made considerable achievements towards the economic integration as they had established a Customs Union (2005) and Common Market (2010). They are subsequently planning to implement a Monetary Union by 2015 and finally a Political Federation of East African States [3].

The aim of this paper is to assess the economic feasibility of the proposed monetary union among the East African Community member countries using the Structural Vector Auto-regression model (SVAR). To do so, we identified the underlying structural shocks that these economies are facing and assessed the extent to which these shocks are symmetric; three different methods were applied: correlation analysis, analysis of variance, and impulse response. This paper seeks to contribute to the relatively scarce economic literature on the East African monetary integration; it also extends the 2 VAR model into a 4 VAR model, as previous EAC researches had used only 2 VAR models which are too restrictive and potentially misleading [4]. The rest of the paper is organized as follows: Section 2 discusses theoretical foundations and empirical reviews of the literature. Section 3 addresses the data and methodology. Section 4 discusses the results and findings. Section 5 concludes the paper with a summary.

II. LITERATURE REVIEW

The Optimum Currency Area (OCA) theory is used to analyze the suitability of a monetary union for a given region; it explores the criteria as well as the costs and benefits of forming a common currency area. The concept of currency areas was founded by Robert Mundell through his seminal paper titled ‘A Theory of Optimum Currency Areas’ [5], followed by Ronald Mckinnon [6], Kenen [7], Corden (1972), and Ishiyama (1975); these authors are the founders of the traditional Optimum Currency Area Theory (OCA). The traditional OCA theory describes the characteristics that potential monetary union members should possess before they form one common currency and surrender their national monetary policy and exchange-rate adjustment of their national currencies.

The New OCA theory is primarily concerned with potential benefits rather than costs, it gives a Meta analysis form of assessment which combines a broad range of OCA properties in a group of countries; the most popular methodological analyses of the New OCA theory are “symmetry of shocks” and “synchronization of business cycles”. These two methods are the key requirements for a suitable monetary union. Proponents of the New OCA theory include: De Grauwe [8], Tavlas [9], Krugman [10], Bayoumi and Eichengreen [11], Darvas & Szapáry [12], Kwan & Yan[13], Frankel and Rose [14], etc. In summary, most of the literature on the OCA theory outlines “symmetry of shocks” and “synchronization of business cycles”.

The empirical literature of OCA theory on the EAC is scarce; the following authors have studied the viability of a monetary union in the EAC: Buigut & Valev [2], Kishor &
Ssozi [15], Mafusire & Brixiova [3], Mburu [16], and Mkenda, [17] Falagiardi [18], Sheikh, et al., [19], and Opolot & Osoro [20]. These studies had used different models and they have reached different conclusions. For example, Buigut, Kishor, Mafusire, and Mburu applied a two-variable SVAR model to test for shock correlation in the EAC countries; they found that a monetary union in the EAC is not feasible. Conversely, Mkenda and Falagiardi employed the G-PPP approach which uses co-integration analysis; they concluded that having a monetary union in East Africa could be a viable option. Lastly, Sheikh and Opolot have studied the feasibility of forming a monetary union in the EAC using the business cycle synchronization approach of Hodrick-Prescott and Baxter-King filters. They found a low degree of synchronization among EAC members, but with improved results in recent years.

III. METHODOLOGY AND DATA

This paper addresses the question of the prospects of a monetary union in the East African Community based on Mundell’s theory of optimum currency areas. The study uses the SVAR model premised on the AD-AS framework introduced by Bayoumi and Eichengreen (1992), with some extension in variables. The data considered were drawn from the World Economic Outlook database of the International Monetary Fund and the World Bank’s World Development Indicators; it ranges from the period of 1980-2010. Before running the models, we performed a unit roots test in order to see whether the data is stationary or not; fortunately we found all variables at I (0). To conserve space, details of the results running the models, we performed a unit roots test in order to see whether the data is stationary or not; fortunately we found all variables at I (0). To conserve space, details of the results of the unit root test are available upon request. This paper uses a four-variable SVAR model to examine the shocks according to the OCA predictions. These variables are global real GDP (Yt*), domestic real GDP (Yt), real exchange rate (et) and domestic price level (pt).

\[X_t = A_0 \epsilon_t + A_1 \epsilon_{t-1} + A_2 \epsilon_{t-2} + ... = A(L) \epsilon_t \]

\[\Delta y_t = A_{11}(L) \epsilon_t \]

\[\Delta y_t = A_{12}(L) \epsilon_t + A_{13}(L) \epsilon_t^d + A_{14}(L) \epsilon_t^p \]

\[\Delta p_t = A_{21}(L) \epsilon_t^p + A_{22}(L) \epsilon_t + A_{23}(L) \epsilon_t^d + A_{24}(L) \epsilon_t^m \]

where \(X_t = [\Delta y_t, \Delta y_t, \Delta et, \Delta pt]^T \), comprising of world real GDP (Yt*), domestic real GDP (Yt), real exchange rate (et) and domestic price level (pt), which are all in log difference forms. The matrix \(A_0 \) is a 4x4 matrix that provides the impulse responses of endogenous variables to structural shocks. \(\epsilon \in \{\epsilon_t, \epsilon_t^s, \epsilon_t^d, \epsilon_t^m\} \), comprising of external world supply shock (\(\epsilon_t^s \)), domestic supply shock (\(\epsilon_t^s \)), domestic demand shock (\(\epsilon_t^d \)), and monetary shock (\(\epsilon_t^m \)), respectively, which are assumed to be serially uncorrelated and are orthonormal.

To identify the structural shocks, we imposed the following long run restrictions: i) global output is considered to evolve exogenously so that domestic supply, domestic demand and monetary shock do not affect global real GDP in the long run. This means \(A_{13} = A_{15} = A_{14} = 0 \); ii) In the long run, domestic real GDP is affected only by supply shocks, this means \(A_{23} = A_{24} = 0 \); iii) Monetary shocks do not have effects on real exchange rates in the long run. These restrictions can be rewritten in matrix form:

\[\begin{bmatrix} \Delta y_{t+1} \\ \Delta y_t \\ \Delta \epsilon_t \\ \Delta p_t \end{bmatrix} = \begin{bmatrix} A_{11} & 0 & 0 & 0 \\ A_{21} & A_{22} & 0 & 0 \\ A_{31} & A_{32} & A_{33} & 0 \\ A_{41} & A_{42} & A_{43} & A_{44} \end{bmatrix} \begin{bmatrix} \epsilon_{t+1} \\ \epsilon_t \\ \epsilon_{t-1} \\ \epsilon_{t-2} \end{bmatrix} \]

IV. RESULTS AND DISCUSSION

After extracting shocks from the SVAR models, the study used cross country correlation analysis to examine the movements of economic disturbances in the East African Countries. Co-movements of shocks across countries are considered a crucial condition towards integration in a common currency area [21]. Table I through 4 report the correlation coefficients of the identified supply and demand shocks among the EAC. The idea is that the more symmetric the shocks as indicated by positive correlations, the more feasible it becomes for a group of countries to establish a monetary union (Kandil, 2009).

| TABLE I: CORRELATIONS OF SUPPLY SHocks 2001-2010 |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Countries | Burundi | Kenya | Rwanda | Tanzania | Uganda |
| Burundi | 1.0000 | | | | |
| Kenya | 0.1190 | 1.0000 | | | |
| Rwanda | 0.6650 | -0.3928 | 1.0000 | | |
| Tanzania | 0.7431 | -0.3205 | 0.7284 | 1.0000 | |
| Uganda | 0.3137 | -0.1466 | 0.1146 | 0.0972 | 1.0000 |

Table I presents the correlation coefficients of domestic supply shocks across EAC countries, for the period of 2001-2010. As the table shows, the domestic supply shocks are less correlated between EAC countries than domestic demand shocks and global shocks. The highest three correlation coefficients are found to be Burundi-Tanzania (0.74), Rwanda-Tanzania (0.72) and Burundi-Rwanda (0.67). Kenya had a negative domestic supply shock correlation with the rest of the countries in the sample, signifying major structural differences. Thus, the costs of Kenya’s participation in the EAC monetary union would be higher than the benefits of joining the EAC currency union.

| TABLE II: CORRELATIONS OF DEMAND SHocks (PRICE) 2001 TO 2010 |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Countries | Burundi | Kenya | Rwanda | Tanzania | Uganda |
| Burundi | 1.0000 | | | | |
| Kenya | 0.6997 | 1.0000 | | | |
| Rwanda | 0.5446 | 0.7024 | 1.0000 | | |
| Tanzania | 0.4376 | 0.5578 | 0.3733 | 1.0000 | |
| Uganda | 0.4120 | 0.4630 | 0.7729 | 0.7284 | 1.0000 |

Table II presents correlation coefficients of demand shocks across EAC. Demand shocks are somewhat stronger than supply shock. The correlation coefficient of the domestic demand shocks ranges from 0.37% (Rwanda-Tanzania) to 0.77% (Rwanda-Uganda). Burundi & Rwanda show a strong demand shock with the other
members of the region; this can be explained by the fact that these two countries are small & landlocked countries that are hugely connected with the other bigger EAC countries. This evidence reflects the symmetry of adjustments to demand shocks in these two countries. To sum up, the findings of demand shocks suggest that EAC countries tend to be affected by similar domestic shocks. Buigut & Valev (2005) found asymmetric demand shocks in the EAC.

The results in Table III and Table IV display the correlations of monetary and external supply shocks among EAC countries. Most of the monetary shocks of EAC members are positively correlated with the exception of Burundi. On the other hand, the global supply shocks of EAC range from 0.65% (Uganda-Tanzania) to 0.97% (Burundi). On the other hand, the global supply shocks of EAC members are positively correlated with the exception of EAC countries. Most of the monetary shocks of EAC correlations of monetary and external supply shocks among that comprises four shocks: global supply, domestic supply, domestic demand and monetary shocks. The correlation analysis reveals that domestic demand shocks and external supply shocks were dominant in the EAC, while domestic supply shocks and domestic demand shocks of the EAC countries do not differ from each other; thus we can say that EAC countries had identical macroeconomic shocks for the period of 2005 to 2010.

After the correlation analysis of supply and demand shocks, it is beneficial to look at the impulse response function (IRF) to evaluate the magnitude or the size of the response of each economy to the various shocks. To conserve space, we limit the analysis to the IRF of real domestic output to each shock within each economy during the 1st, 5th, and 10th year. Details of IRF are available upon request. Table 6 summarizes the dynamic responses of domestic real output to various shocks. In general, the IRF of output in EAC countries to the shocks are small and dissipating within the following 10 years, reflecting a high speed of adjustment. On the other hand, the table shows that external and domestic supply shocks have more impact on domestic output; while domestic demand and monetary shocks have less impact on domestic output. In summary, the IRF of the EAC countries have shown small correlated disturbances and exhibited relatively rapid adjustments to the equilibrium.

Table V provides the summary of results for both one-way

V. CONCLUSION

This paper empirically evaluated the feasibility of a monetary union among the East African Community members. The study had used a four-variable SVAR model that comprises four shocks: global supply, domestic supply,
negative monetary shock. The Anova and IRF analyses had shown relatively favorable results. In general, the results were in line with previous researches. Finally, although EAC members had shown some degree of symmetric shock, they still need to increase policy co-ordination in order to achieve the desired level of symmetry of shocks. This study recommends future researchers to use quarterly data series & industrial production index to get desirable and better outcomes.

ACKNOWLEDGMENT

Research Project No. of PS002-2009A: Authors are grateful to the Institute of Research Management and Consultancy, University of Malaya for their support in funding this research.

REFERENCES

Kamaludin A. Sheikh is currently working with Jazan Medical Research Centre of Jazan University as a researcher and lecturer, Kingdom of Saudi Arabia. Prior to this, he worked as consultant in health economics and statistical analysis at ‘Total Health Information System Inc’ in Kuala Lumpur-Malaysia. Current research interests: international trade (international trade, cointegration, J-curve, VECM), development economics (growth, investment, inflation, saving), monetary economics (highly liquid money, broad money, bank lending channel, money channel credit channel, VAR, VECM) and macroeconomics (macroeconomics dynamics, exchange rate volatility, international finance, inflation, growth, VAR, VECM, GARCH, ARCH).

Zarinah Binti Yusof is a senior lecturer at department of economics, faculty of economics, University of Malaya, Kuala Lumpur-Malaysia. Areas of expertise: international trade (international trade, cointegration, J-curve, VECM), development economics (growth, investment, inflation, saving), monetary economics (highly liquid money, broad money, bank lending channel, money channel credit channel, VAR, VECM) and macroeconomics (macroeconomics dynamics, exchange rate volatility, international finance, inflation, growth, VAR, VECM, GARCH, ARCH).

Mohamed Aslam is a senior lecturer at department of economics, faculty of economics, University of Malaya, Kuala Lumpur-Malaysia. Areas of expertise: international trade policy, open macroeconomics, regional economic integration (free trade area, new economic geography), post-Keynesian economics, international economics (FDI/MNCs), economic development and growth (Malaysian economy, ASEAN and China), international finance (Exchange rate, portfolio capital, asset market), macroeconomics (monetary and fiscal theory).