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Abstract—Despite the importance played by Interest Rate 

Swaps (IRS), it appears that sounding analyzes related to the 

hedging of portfolios made by swaps is not clear in the financial 

literature. 

We provide here the analysis corresponding to a parallel shift 

of the interest rate. The suitable swap sensitivities to make use 

in hedging and risk management obtained here may be seen as 

some generalization of the well known bond duration and 

convexity in the swap framework. 

Our present results might provide a support for practitioners, 

using portfolio of swaps and/or bonds, in their hedge 

decision-making. 

 

Index Terms—Hedging, optimization, zero-coupon, swap.  

 

I. INTRODUCTION 

Interest Rate Swaps (IRS) appear to be instruments largely 

used by market participants (companies, local governments, 

financial institutions, traders ...) for many purposes including 

debt structuring, regulatory requirements and risk 

management. According to the BIS June 2011 statistics, the 

Interest Rate Swap (IRS) represents 78.25% of OTC 

derivatives while the corresponding equity part is just about 

0.97%. 

Despite this market importance played by IRS, it appears 

that sounding analyzes related to the hedging of portfolios 

made by swaps is not clear in the financial literature. To 

partially fill this lack, we provide here the analysis 

corresponding to a Parallel Shift (referred in the sequel as 

(PS)) of the interest rate. Though such an underlying 

assumption is little bit less realistic, both practical and 

theoretical reasons lead to grant a consideration to this 

particular situation.  

Some of the arguments are presented in our (lengthy) 

working paper [1], where we have already analyzed the 

portfolio hedging using swaps and bonds. Parts of our 

findings are summarized and reported here. In our numerical 

illustrations we consider the hedge of a swap portfolio by 

another swap portfolio, a case which has not been considered 

before. The suitable swap sensitivities to make use in hedging 

and risk management are obtained here as a byproduct of our 

analyses. They may be seen as generalizing the well-known 

bond duration and convexity [2]-[3] in the swap framework. 

These obtained sensitivities are in line with the bond situation, 

for which the need to take into account both the passage of 
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time and horizon hedging are analyzed in [4] and [5]. 

Our aim in writing this paper is to provide a theoretical 

support which shed light practitioners in their 

decision-making related to the hedge of a position sensitive to 

interest rate and by using a portfolio made by swaps (and/or 

bonds). For the time being, there are various broker 

advertisements and leaflets about switching to alternative 

instruments (as VIX futures, inverse ETF, Swap future ...) for 

the hedging purpose instead of just using a classical bond 

portfolio. However the arguments used in these leaflets are 

essentially based on (particular) numerical situations which 

are certainly attractive but unfortunately do not reflect all 

other cases which may arise in reality. Systematic analysis of 

the portfolio hedging mechanism, as performed here, cannot 

really fully describe over commercial flyers. 

Our present project is essentially focused on the hedge of a 

position sensitive to the interest rate by a portfolio of swaps. 

The use of a bond portfolio as a hedging instrument has been 

investigated in [5]. It may be noted that the hedge with a bond 

future was previously studied in [6] and empirically 

investigated in [7]. Here we do systematic analyses of the 

hedging mechanism in the sense that they are essentially 

based on the portfolio instrument characteristics and, in 

contrast with various academicals papers and commercial 

leaflets related to hedging, they do not lean on particular 

historical data. Our results provide an approach and formulas 

which may be directly implemented in order to get the 

suitable hedge ratio and corresponding hedging error 

estimates for any given portfolio of swaps. Of course the 

interest rate curve, at the hedge horizon, is assumed here to 

make a parallel shift belonging to some closed finite interval. 

Though this last seems to be a restrictive assumption, any 

realistic interest rate curve movement is always inside some 

band which may be determined based on the market view. It 

means that we have derived here some sort of robust hedging 

approach in the sense that it avoids to use involved dynamical 

stochastic model for the interest rate. 

In Section 2, we make a survey of our results, whose 

technical details are presented in [1]. Then a numerical 

illustration is displayed in the next Section 3. 

 

II. SURVEY OF OUR RESULTS 

After recalling features on Zero-Coupon-Bond and Interest 

Rate Swap in 2.1, we present in Subsection 2.2 the underlying 

idea to the hedge of a portfolio of swaps by another portfolio. 

Our main contribution is on the derivation of the sensitivities 

and the associated optimization. 

A. Zero-Coupon and Interest Rate Swap 

The present time is denoted by t. By ),( TtP we mean the 

time-t price of a Zero-Coupon-Bond which, can be seen as an 

instrument paying one unit of the currency to its holder at the 
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maturity T, where Tt  Commonly it is taken that 

            ))(;(exp),( tTtTtyTtP                               (1) 

where tT   is the time-to-maturity. The nonnegative real 

number );( tTty   represents the interest rate applied at time 

t for this time-to-maturity and very often known under the 

name of yield-to-maturity. 

A plain vanilla Interest Rate Swap is a contract between 

two counterparties. The first agrees to pay to the second, 

during a given period of time, regularly a cash flow equal to 

the interest corresponding to a predetermined fixed rate on 

the contractual notional principal. In return, the first 

counterparty receives an interest at floating rate on the same 

notional principal and for the same period of time. It may be 

seen [1] that, the time-t value for such a swap (with respect to 

the point of view of the counterparty paying the fixed rate) is 

given by 
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where 

 

Mi ttttt ......0 10   

 

such that 
Mi ttt ......1

 correspond to the cash-flow 

time-payments. Here ),( 1 ii tt   denotes the annual measure 

of the time-elapsed between 1it and it . For a semi-annual 

frequency one has 5.0),( 1  ii tt . By rate_Swap we mean 

the contractual predetermined rate, such that at the contract 

time inception the swap has a zero market value. 

The swap market value, as in (2) are one things, but for the 

position management and hedging the change of the market 

value matters. Therefore for the (future) time-period 

),( tt  , let us set 
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To simplify we only consider the case 
1tt  such that 

no payment takes place during ),( tt  When such an 

assumption is not satisfied then at least an effective cash-flow 

is paid or received and the analysis becomes little bit 

complicated. The assumption used here relies on the fact that 

in practice the horizon under consideration is preferably short 

enough in order the associated projected view to be more and 

less credible. However the real hedging horizon may be for a 

longtime, and consequently it is usual among the 

practitioners to roll their hedging positions. It means that it is 

important to have at a disposal an accurate analysis for the 

single-period hedging and it is exactly our main focus in this 

paper. The explicit value of change value of the Swap during 

the period ),( tt may be written as 
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(4) 

With this last expression the swap market value change 

during the time-period ),( tt  arises as a linear 

combination of changes of zero-coupon bonds with various 

maturities it ’s. It means that we have to make use of features 

concerning zero-coupon changes 

),()(.),( ii ttPttP   

For such a purpose, a model for the future evolution of the 

interest rate is needed. In this paper we will focus on the 

common hypothesis ˝Parallel Shift (PS) of the yield curve˝ at 

the future time )( t  which is described by 

(.));()(.);(   tyty  

where ),(.,(.)  t  In this last, we mean that the shift   

depends on the present time t and horizon .  The strong fact 

here ( and likely less realistic ) is that the shift does not 

depend on the maturity . 

B. The Hedging Mechanism and Sensitivities ),( TtP  

Let us denote by tV  the present time t-value of a portfolio 

assumed to be sensitive to the interest rate which is made by 

swaps or/and bonds. At the future time horizon t  this 

portfolio may suffer from a loss, in the sense that VVt 
. 

So to try to maintain the (future) value (.)tV  to be close to 

tV , the portfolio manager has to put in place a hedging 

technique. The idea relies on using another portfolio, referred 

in the sequel as a hedging portfolio ( or instrument), such that 

this last would lead to a nonnegative profit compensating the 

loss on the initial portfolio. Therefore instead of the absolute 

change   

      
,(.) & _ _ (.)t t t tV V P L naked portfolio          (5) 

associated with the initial naked portfolio, at the horizon 

t , the change for the covered portfolio is given by 
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The hedging portfolio H is assumed at time-t to have the 

value 
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It means that H is made by
**I types of instruments 
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short positions. For a given type 
**i  ( resp. 

*i ), we make use 

of 
**
**i

n  ( resp. *
*i

n  ) number of instruments **

, **it
H  ( resp. 

*

, *it
H  ). The Profit&Loss corresponding to the use of the 

hedging instrument is (roughly) given by 
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With
**

0

****

0 ,,, vvvv , are fixed constants such that 

1,0 *

0

**

0  vv , and 1,0 ***  vv  The numerical values of 

these constants depend on the market practice under 

consideration. In (10), we have used the fact that the 

instrument value, **

, **it
H  is the product of its notional 

**
**i

N with its one unit value 
**

, **it
h . For an instrument satisfying 

0**

, ** 
iu

h  during its life-time, as in the case of a (risk credit 

free) bond for example, the corresponding cost at time t is 

very often defined a **

,
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Hv ; so that here one can 

take 0**

0 v . The introduction of 
**

0v nd 
*

0v  relies on the fact 

that for some instruments as a swap, one can have that the 

corresponding market value satisfies 0**
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H . In this case, 

practitioners [8] take as a base for fees the corresponding 

notional 
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The hedging problem for the initial portfolio V is reduced 

to suitably choose the financial instruments with values 
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should be small as possible. The difficulty here is linked to 

the fact that the future values of the hedging instruments at 

time )( t ,  are unknown at the present time t where the 

hedge strategy is built. The choice of the hedging instruments 

is dictated by the willing that the resultant effect of their 

change variations would roughly offset (i.e. going in the 

opposite direction) the change of the portfolio V to hedge. 

Then, the problem is reduced to a minimization problem of 

finding suitable allocation for the security numbers  
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Under PS or (5) the point is to assume that for any 

nonnegative integer p one has the approximation 
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where U is one of V ,  
**

, **it
H  and 

*

, *it
H . In (11) the notations 

 

),,;0( VtSens      and   ),,;( VtkSens   

 

are used to refer respectively the zero and k-th sensitivities 

order of the considered financial instrument V, computed at 

time t and are assumed to prevail for the horizon  . A main 

point on the efficiency of (11) in the hedging operation relies 

on the suitable choice of the integer p such that the 

approximation-error 
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is small from the perspective of the hedger, as for 

example 210(.) R . Such a strong requirement may be 

useful since very often in practice one has to deal with 

positions having large notional size as 
tnU with n = 107. 

Making use of (11) for VU  , **HU   and *HU   and 

taking (9) and (10) into account, then one has 
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where 
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The idea for obtaining the sensitivity for a portfolio is that 

this last is a linear combination of various instruments. So we 

are reduced to compute the sensitivity for each instrument. 

Next the sensitivity for a given instrument (linear with 

respect to the zero-coupon bonds) depends just on the 

sensitivities of the involved zero-coupons. It means that the 

main point is roughly speaking to derive the sensitivity of a 

zero-coupon. Due to the space limitation, these 

sensitivities ),,;( VtkSens  ’s are not reported here but the 

full details may be seen over our complete technical paper 

[Ja-Ra-Ya; 2012]. 

We refer as a view on the interest rate shift (.) , the 

hypothesis that there are nonnegative real numbers 
 and 

 for which 
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Though (.)  is a random quantity, not known at the 
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This last may be seen as the objective function associated 

with a minimization problem and related to the hedging issue 

presented above. All remainder terms may be removed after 

choosing the expansion order p sufficiently large. For the 

function F as defined in (19), we are lead to an integer 

optimization problem defined by integer linear constraints, 

since the objective function is both non-linear, non-convex 

and non-differentiable at the origin. To overcome these 

difficulties we make use of a linearization technique as 

introduced in [9] and which7 consists to replace the initial 

problem by an equivalent linear problem. However at last, a 

solver as the commercial CPLEX solver 9.0 is useful to solve 

the resulting Mixed Integer Linear Problem we introduce. 

More details are given in [1]. 

 

III. NUMERICAL ILLUSTRATION 

The present time-t shape of the yield curve may be seen as 

interpolated from available market interest rates by using the 

Nelson-Siegel-Svenson model [10] as  
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3;2;1; ,, ttt   and   depend on time t but not on the 

time-to-maturity τ. The model is assumed to be calibrated as 
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We consider a hedging horizon of days90  To take 

into consideration hedging costs, the deposit rates linked to 

holding the position (either for payer or receiver swap) are 

assumed to be given by %20*

0

**

0  vv . For the time-horizon 

t  the interest rate is supposed to make a PS with respect to 

the view %3  and %3 .The choice 12p is 

chosen here in order to insure remainder terms with small 

sizes, which consequently can be neglected. The notations 

with tilde ( ) are used in the sequel to refer the portfolio to 

hedge. We are interested here to hedge a swap portfolio by 

another swap portfolio. The portfolio to cover is assumed to 

be made by five types of payer swaps 
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~
S to 
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~
S  and three 

types of
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~
S to 
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~
S . The characteristics of these swaps are 

summarized in Table I. 
 

TABLE I: CHARACTERISTICS OF THE POTFOLIO TO HEDGE 

type number maturity frequency rate_Swap 

**

1S  100 3years 6months 6.65% 

**

2

~
S

 
200 4years 6year 6.82% 

**

3

~
S

 
300 7years 6year 7.11% 

**

4

~
S

 
100 10years 6months 7.25% 

**

5

~
S

 
200 5years 6months 6.94% 

*

1

~
S

 
200 4years 1year 6.93% 

*

2

~
S

 
100 6years 1year 7.17% 

*

3

~
S

 
100 7years 1year 7.24% 

 

Names of the types of swaps used are displayed in the first 

column of this Table I. The numbers of swaps used for each 

type are presented in the second column. Maturities of the 

considered swaps are given in the third column. We have 

written in the fourth column the corresponding swap payment 

frequency, as semi-annually or annually frequency-based. 

Each swap is assumed to have the notional value of 1 Million 

Euro. The fair rate swap of each swap is given in the fifth 
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column. Assuming that the present time corresponds to the 

time-inceptions for all of these swaps, and then the portfolio 

under consideration has zero value.  

In order to decide to hedge or not the considered swap 

portfolio, it is valuable to have a projection of the low and 

high bounds for the portfolio change value at the given 

horizon and under the view of ( more and less severe ) 

parallel shift mentioned above. When applying a criterion we 

introduce in our full paper [1], then one obtain the result 

which is summarized in Table II. 

 
TABLE II: BOUND OF THE PORTFOLIO TO COVER 

Channels *  )(_

_

*

, ttportf

valuechange  

min, (.)_

_

ttSwap

valuechange  
-3% -2.36*107 

max, (.)_

_

ttSwap

valuechange  
3% -1.93*107 

 

In Table II, by 
* we denote the value of 

%]3%;3[ which allows to attain the minimum or 

maximum of the portfolio change value. It is seen here that in 

the worst case, the potential loss when dealing with just a 

naked portfolio position can attain the size of 20 Millions of 

Euros, which corresponds roughly to 20 swaps. So it might be 

useful to hedge the position as we consider now. 

To hedge the previous portfolio introduced in Table II 

above, we make use of another swap portfolio made by one 

type of payer swap 
**

1S , and three types of receiver swaps 

*

3

*

2

*

1 ,, SSS The characteristics of all of these instruments are 

summarized in Table III. 

 
TABLE III: CHARACTERISTICS OF THE HEDGING INSTRUMENTS 

type number maturity frequency rate_Swap 

**

1S  
**

1n  2years 6months 6.41% 

*

1S  
*

1n  3years 1year 6.76% 

*

2S  
*

2n  10years 1year 7.37% 

*

3S  
*

3n  8years 6months 7.17% 

 

The amount required for the hedging depends actually on 

the number of instruments used for that purpose, and 

consequently is not known in advance. As detailed in [1] here 

we can take D = 65 Million Euros. The numbers 
**

1n and
*

1n ,
*

2n ,
*

3n  of swaps 
**

1S and 
*

3

*

2

*

1 ,, SSS  

3respectively required for the hedging, obtained from the 

approach introduced in this work are finally summarized in 

Table IV. 

 
TABLE IV: RESULT OF THE HEDGING 

**

1n  
*

1n  
*

2n  
*

3n  
Max Profit 

Loss 

0 122 0 84 883 737.24 

 

The real Profits or Losses (PL) corresponding to some 

shifts %]3%;3[ are presented in the second column of 

Table V. So by PLport we mean the PL corresponding to the 

naked portfolio change value ( that is the portfolio PL in 

absence of hedging 

 
TABLE V: WEALTH FOR ANY SHIFT AFTER THE HEDGING. 

  PLport PLinst PLport_cov ret_port_cov Ret_port 

-3% -23889286 23614943 -857471 -1.32% -36.75% 

-2.5% -19631335 19388781 -825683 -1.27% -30.20% 

-2% -15513978 15291407 -805700 -1.24% -23.87% 

-1.5% -11530194 11318597 -794726 -1.22% -17.74% 

-1% -7673324 7466276 -790176 -1.22% -11.81% 

-0.5% -3937044 3730514 -789658 -1.21% -6.06% 

0% -315358 107520 -790967 -1.22% 4.92% 

0.5% 9917602 -10120810 -786336 -1.21% 15.26% 

1% 6606704 -6814674 -791098 -1.22% 10.16% 

1.5% 9917602 -10120810 -786336 -1.21% 15.26% 

2% 13134977 -13328061 -776212 -1.19% 20.21% 

2.5% 16263436 -16439598 -759291 -1.17% 25.02% 

3% 19307348 -19458483 -734263 -1.13% 29.70% 

 

Profits and losses for the hedging instruments, denoted 

here PLinst and defined in (8) are displayed in the third 

column. In the fourth column one can see the PL for the 

overall portfolio (portfolio to hedge and hedging portfolio). 

These last quantities include the hedging costs as defined in 

(9). By ret_port, in the fifth column, we mean the ratio  

 

D

PLport
portret

cov_
cov__   

 

It may be noted that it is not the return linked to the 

covered portfolio as we just take as a basis the maximal 

amount allowed for the hedging operation. Indeed for swaps 

whose the initial values may be equal to zero, the notion of 

return should be taken with care as it is analyzed by A. 

Meucci [8]. Observe that the portfolio to hedge is not 

assumed to be unwound at the considered horizon, and the 

amount D is freezed for the hedge though the cost really 

involved in the operation is strictly less than D. For the last 

sixth column by ret_port we mean the ratio 

D

PLport
portret _  

The compensation between the loss related to the portfolio 

to hedge and the gain associated with the hedging portfolio 

may be understood from the alternated signs for the quantities 

displayed in the second and third columns. For  %0  one 

has %049_ portret  This an indication that the 

time-passage matters in hedging, and consequently should be 

taken into account as is the case for the sensitivities we have 

introduced in this paper. For the interest rate shift %2  it 

may be seen, from the last two columns, that 

%24.1cov__ portret  and %87.23_ portret . 

This means that a loss appears though the portfolio position is 

hedged or not. However the magnitude is clearly more 

important than the one involved in absence of hedge. Under 

the shift %2  one has %19.1cov__ portret  and 

%21.20_ portret  That is, in absence of the hedging 

operation, the considered portfolio has lead to an important 
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gain. The hedge has an effect to get at worst a loss, but the 

corresponding magnitude (when taking into account D as a 

reference basis) is fortunately small. The cost of the hedging 

instruments is about 583128.94. Here the resulting loss can 

be viewed as the price of uncertainty and fear about the 

interest rate behavior at the considered horizon. At this point, 

it may be important to recall that the hedging operation has 

mainly as purpose to roughly maintain the portfolio at its 

initial level, but not to make any profit. 
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