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Analysis and Forecast on the Price Change of Shanghai
Stock Index

QiQi

Abstract—This paper selects the closing price data of
Shanghai stock index from January 4, 2000 to June 2020 as the
research data. Through ADF test, white noise test and ARCH
effect test, it is found that the closing price sequence of
Shanghai stock index has the characteristics of non-stationary
and autocorrelation. Its first-order difference sequence is a
stationary white noise sequence, and has the characteristics of
peak thick tail and conditional heteroscedasticity, based on
this, ARMA model and GARCH model are selected to model
the data, and it is found that the closing price sequence of
Shanghai stock index has leverage effect. At the same time, the
model is further used to make short-term forecast, including
dynamic forecast and static forecast for the time series data,
and the conclusion is that GARCH(1,2) is the more favorable
model, and the shortcomings of this analysis are pointed out.

Index Terms—Time series, ARMA model, GARCH model,
Shanghai stock index, non-white noise series.

l. INTRODUCTION

With the globalization of market opening and financial
innovation, the research on the periodicity and law of stock
market volatility has become one of the most important
issues in China and even the international financial market.
[1] For one thing, investors want to find the hidden
economic laws in the stock market. For another, people are
also exploring more accurate methods and tools to predict
the stock market. There is no doubt that financial time series
model analysis occupies a place in this field. In this paper,
ADF test, white noise test and ARCH effect test are used to
carry out the first-order difference, and ARMA model and
GARCH model are selected to model and predict the data.
Hence, managers understand the dynamics of the stock
market, so as to make relevant decisions, and at the same
time, investors can get higher returns. [2] However, the
stock price series is a very complex nonlinear dynamic
system. The traditional time series forecasting methods
reflect the characteristics and changes of linear dynamic
system through the statistical relationship of time series, so
as to reveal the inherent change rules. Therefore, in order to
predict stock price completely and accurately for such a
nonlinear dynamic system as stock, the time series model
plays an important role in the analysis and prediction of
Shanghai stock index.
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Il. RELATED RESEARCH METHODS AND THEORETICAL

BASIS OF MODEL

A. ADF Test

In order to ensure the accuracy of the model, this paper
makes a stationary test on the series. The author choose
ADF test, and the number of lag periods is determined by
AIC and SC minimum criteria.

B. Processing of Nonstationary Time Series

White noise test is the most important part of the time
series. The rationality of the selected model can be judged
by the white noise test of differential residuals.

C. Establishing ARMA Model

AR model is to use the previous observation value and
the current interference value through a certain linear
combination to predict and analyze. MA model is based on
the previous interference value and the current interference
value through a certain linear combination to predict.
ARMA model is composed of AR model and MA model,
which is mainly used to describe stationary stochastic
process.

D. Establishing GARCH Model

ARCH model is called "autoregressive conditional
heteroscedasticity"  model,  which  describes  the
heteroscedasticity of residual items in financial time series
model. The core idea of arch model is that the variance of
the residual term at time t depends on the square of the
residual term at time t-1. [3]

In order to get a good fitting effect, ARCH model needs
to set a large lag coefficient p, which inevitably needs to
estimate a lot of parameters, which increases the amount of
calculation. GARCH model solves this problem well.
GARCH model introduces lag term in conditional variance
equation of arch model and obtains GARCH (p, q) [4].

A. Sample Data Selection

In order to make sure the selected stock index reflect the
situation of China's stock market as much as possible [5],
the Shanghai stock index is selected as the representative
stock of China, and the closing price data of Shanghai stock
index from January 4, 2000 to June, 2020 is selected as the
research object to study the periodicity of China's stock
market. Remove some problematic data, compare and
process the remaining closing price data of Shanghai stock
index in Excel on each working day, and then get the final
experimental data after deleting the non-overlapping dates.

EMPIRICAL ANALYSIS
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At the same time, the time series were further analyzed in
Eviews.

B. Tests and Treatment of Time Series

1) Stability test and treatment

Before analyzing time series, in order to eliminate the
phenomenon of pseudo regression, it is necessary to carry
out unit root test on time series. [6]
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Fig. 1. Time series diagram of original time series.

From the time series, it can be seen from Fig. 1 that the
time series has not obvious periodicity, and direct
observation cannot directly determine whether it is stable.
[7] At this time, we can further judge whether the series is
stable with the help of autocorrelation graph.

Date: 06/09/20 Time: 12:52

Sample: 1 4948
Included observations: 4949

Autocorrelation Partial Correlation AC PAC Q-Stat Prob
| ] 1| 1 0998 0998 49371 0.000
| ] 2 0997 -0.030 9858.5 0.000
| ] [ 3 0995 0.046 14769. 0.000
| ] 4 0994 -0.044 19663. 0.000
| ] i 5 0992 -0.061 24541. 0.000
| — 6 0.990 -0.008 29403. 0.000
| — | 7 0989 0.048 34249. 0.000
| — 8 0987 -0.026 39080. 0.000
| — 9 0985 -0.006 43895. 0.000
| — I 10 0.983 0.003 48693 0.000
| — | 11 0.882 0.009 53477. 0.000
| — 12 0.980 -0.021 58244 0.000
| — 13 0.978 -0.031 62994. 0.000
| — I 14 0.976 -0.056 67725. 0.000
| — [ 15 0974 0.034 72439. 0000
| — 16 0.972 -0.048 77134. 0.000
| — I 17 0970 0.001 81810. 0.000
| — | 18 0.968 0.001 86467. 0.000
| — 19 0.966 -0.015 91105. 0.000
| — | 20 0964 0.050 95725. 0.000
| e— 21 0962 -0.012 100326 0.000
| — 22 0.960 -0.009 104909 0.000
| — 23 0958 -0.010 109474 0.000
[ — I 24 0956 0.025 114021 0.000
| — 25 0954 -0.014 118549 0.000
[ — 26 0.952 -0.003 123060 0.000
| — | 27 0850 0.011 127552 0.000
| — 28 0.948 -0.000 132027 0.000
[ — 29 0.946 -0.035 136482 0.000
| — | 30 0.944 0.002 140919 0.000
| — I 31 0942 0.021 145338 0.000
| E— | 32 0940 0.014 149739 0.000
| — [ 33 0.938 0.040 154123 0.000
| E— | 34 0936 0.006 158491 0.000
| — 35 0.934 -0.041 162841 0.000
[ — 36 0932 -0.018 167175 0.000

Fig. 2. Autocorrelation graph of original time series.

According to Fig. 2, it can be seen that the ACF is always
positive above the zero axis as the number of delayed
periods increases, and the attenuation rate is very slow.
Therefore, it can be judged that the original time series is
non-stationary.

Meanwhile, the results show that the P value of LB test
statistic is far less than 0.05 under each order delay.
Therefore, it can be determined that the original sequence
belongs to non-white noise sequence, which has the
significance of further research.
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2) Model order determination

Combined with Fig. 3, it can be seen from Fig. 4 that the
value of ADF statistic is - 60.86428, which is less than the
corresponding critical values of 1%, 5% and 10%
(respectively - 3.959894, - 3.410714, - 3.127144), and P
value is 0, which means that the original hypothesis is
rejected, the first-order difference sequence has no unit root
and the sequence is stable.
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Fig. 3. First order differential time series diagram.

Null Hypothesis: D(DX) has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 3 (Fixed)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -60.86428 0.0000
Test critical values: 1% level -3.959804
5% level -3.410714
10% level -3.127144

*MacKinnon (1996) one-sided p-values.
Fig. 4. Unit root test after first order difference.

Date: 06/09/20 Time: 21:07
Sample: 1/04/2000 6/08/2020
Included observations: 4947
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0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

-0.485
-0.056
0.039
0.049
-0.011
-0.086
0.041
0.013
-0.005
-0.033
0.021
-0.002
0.030
-0.044
0.017
0.019
-0.028
0.029
-0.045
0.040
-0.012
-0.001
-0.014
0.025
-0.024
0.003
0.025

-0.495 1
-0.399 1
-0.311 1
-0.187 1
-0.105 1
-0.154 1
-0133 1
-0.107 1
-0.076 1
-0.103 1
-0.099 1
-0.114 1
-0.054 1
-0.076 1
-0.068 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

- [ L IO TR

-0.039
-0.059
-0.012
-0.059
-0.035
-0.033
-0.022
-0.041
-0.018
-0.047

e l_|l_|l—|'_|V_|V_‘V_\’_H_‘I—‘|_||_||_||_||_|

[ i
] 27

-0.059
-0.025
-0.025 -0.043 0.000
| 29 0.027 -0.005 0.000

Fig. 5. Correlation coefficient graph after first order difference.

As shown in Fig. 5, autocorrelation is truncated and
partial autocorrelation is trailing. From the autocorrelation
graph, the following analysis can be made:

a) The autocorrelation coefficient decreases rapidly to
0 after k=1, so the MA (1) model can be fitted.

b) The partial autocorrelation coefficient decreases to 0
after k=1 or k=2, so AR (1) model or AR (2) model can be
fitted.

c) At the same time, ARMA (1,1) and ARMA (2,1)
models can be considered.
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IV. MODELING

A. ARMA Model
1) Modeling
®  Establishing MA (1) model

As can be seen from Fig. 6, the coefficient P value is less
than the significance level 0.05, so it is considered that the
coefficient passes the test, and the MA (1) model can be
established.

Dependent Variable: DX

Method: Least Squares

Date: 06/10/20 Time: 15:01

Sample (adjusted): 1/05/2000 6/08/2020
Included observations: 5329 after adjustments
Convergence achieved after G iterations

MA Backcast: 1/04/2000

Variable Coefficient ~ Std. Error  t-Statistic Prob.
C 0287420 0638207 0450356 06525
WMA(1) 0035725  0.013692 2609094  0.0091
R-squared 0.001152 Mean dependent var 0.287371
Adjusted R-squared 0.000964 S.D. dependent var 45.00412
S.E. of regression 44.98241  Akaike info criterion 10.45080
Sum squared resid 10778746  Schwarz criterion 10.45327
Log likelihood -27844.14  Hannan-Quinn criter. 10.45166
F-statistic 6.142814  Durbin-Watson stat 2.003442
Prob(F-statistic) 0.013225
Inverted MA Roots -04

Fig. 6. Parameter estimation of MA(1) model.

Establishing AR (1) model

Dependent Variable: DX

Method: Least Squares

Date: 06/10/20 Time: 156:04

Sample (adjusted). 1/06/2000 6/08/2020
Included observations: 5328 after adjustments
Convergence achieved after 2 iterations

Variable Coefficient ~ Std. Error  t-Statistic Prab.
C 0.286827  0.636920 0450334 06525
AR(1) 0.032303  0.013695  2.358675  0.0184
R-squared 0.001043 Mean dependent var 0.286804
Adjusted R-squared 0.000856 S.D. dependent var 45.00832
S.E. of regression 44 98906  Akaike info criterion 10.45109
Sum squared resid 10779906  Schwarz criterion 0.45356

1
Log likelihood -27839.71  Hannan-Quinn criter. 10.45195
F-statistic 5563325 Durbin-Watson stat 1.996802
Prob(F-statistic) 0.018376
Inverted AR Roots 03

Fig. 7. Parameter estimation of AR(1) model.

As shown in Fig. 7 above, the coefficient P is less than
0.05, it is considered that the coefficient passes the test and
AR (1) model can be established.

® Establishing AR (2) model

Dependent Variable: DX

Method: Least Squares

Date: 06/10/20 Time: 15:08

Sample (adjusted): 1/07/2000 6/08/2020
Included observations: 5327 after adjustments
Convergence achieved after 3 iterations

Variable Coefficient  Std. Error  t-Statistic Prob.
C 0276707 0608502 0454734  0.6493
AR(1) 0033765 0013680 2466605  0.0137
AR{2) -0.045744 0013689 -3.341693  0.0008
R-squared 0.003134 Mean dependent var 0.276672
Adjusted R-squared 0.002759 S.D. dependent var 45.00847
S.E. of regression 4494434 Akaike info criterion 10.44929
Sum squared resid 10754446  Schwarz criterion 10.45300
Log likelihood -2782868 Hannan-Quinn criter. 10.45058
F-statistic 83688051 Durbin-Watson stat 1.995124
Prob(F-statistic) 0.000235
Inverted AR Roots J02+.21i 02-21i

Fig. 8. Parameter estimation of AR(2) model.

As shown in Fig. 8, similarly, the coefficient P < 0.05
indicates that the AR (2) model can be established after the
coefficient passes the test.
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® Establishing ARMA(1,1) model

Dependent Variable: DX

Method: Least Squares

Date: 06/10/20 Time: 15:11

Sample (adjusted): 1/06/2000 6/08/2020
Included observations: 5328 after adjustments
Convergence achieved after 10 iterations

MA Backcast: 1/05/2000

Variable Coefficient ~ Std. Error  t-Statistic Prob.
(o] 0.286772 0.626850 0.457480 0.6473
AR(1) -0.852904 0.048010  -17.76530 0.0000
MA(1) 0.887473 0.042340 2096074 0.0000
R-squared 0.004367 Mean dependent var 0.286804
Adjusted R-squared 0003993 S.D. dependent var 45.00832
S E. of regression 4491838 Akaike info criterion 10.44813
Sum squared resid 10744044  Schwarz criterion 10.45184
Log likelihood -27830.83  Hannan-Quinn criter. 10.44943
F-statistic 1167731 Durbin-Watson stat 1.996675
Prob(F-statistic) 0.000009
Inverted AR Roots -85
Inverted MA Roots -89

Fig. 9. Parameter estimation of ARMA(1,1) model.

As Fig. 9 shows, the P values of coefficients AR (2) and
MA (1) are 0, which can be detected and ARMA (1,1)
model can be established.

® Establishing ARMA(1,2) model

Dependent Variable: DX

Method: Least Squares

Date: 06/10/20 Time: 15:18

Sample (adjusted): 1/06/2000 6/08/2020
Included observations: 5328 after adjustments
Convergence achieved after 7 iterations

MA Backcast: 1/04/2000 1/05/2000

Variable Coefficient  Std. Error  t-Statistic Prob.
C 0.287467 0616814 0468052  0.6412
AR(1) -0.387575 0221172  -1.752366  0.0798
MA(1) 0.423541 0221173 1.914978  0.0555
MA(2) -0.033081 0.019171  -1.725555  0.0845
R-squared 0.003988 Mean dependent var 0.286804
Adjusted R-squared 0003427 S.D. dependent var 4500832
SE. of regression 4493114 Akaike info criterion 10.44889
Sum squared resid 10748132  Schwarz criterion 10.45383
Log likelihood -27831.84 Hannan-Quinn criter. 10.45062
F-statistic 7105560  Durbin-We 2.000729
Prob(F-statistic) 0.000092
Inverted AR Roots -39
Inverted MA Roots o7 - 49

Fig. 10. Parameter estimation of ARMA(1,2) model.

Observing P values in Fig. 10, they were all greater than
the significance level of 0.05, the coefficients could not pass
the test, and the ARMA (1,2) model could not be
established.

After that, the model needs to be selected. Among the
five models mentioned above, it is not difficult to find that
as long as AR (1), MA (1) and ARMA (1,1) models can pass
the test, but the optimal model still needs to be determined.
Therefore, AIC criterion and SC criterion can be used to
further judge the advantages of the models, and the data
values of the two criteria of each model are analyzed. The
smaller the value, the better. The values are shown in Table
I below:

TABLE I: AIC AND SC CRITERION

Model AIC criteria | SC criteria
AR(1) 10.451 10.454
MA(1) 10.450 10.453
ARMA(1,1) | 10.448 10.451

It can be seen from Table | that ARMA (1,1) meets the
requirements of AIC and SC, and the minimum order is the
optimal order. Therefore, it is thought that ARMA (1,1) is
more suitable as the mean value equation of Shanghai stock
index.
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2) Model test (residual test)
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Fig. 11. Residual time series diagram.

By observing the sequence diagram of the residuals in
Fig. 11, the author find that the data may be stable. It can be
seen that the residuals show large and small fluctuations,
and the fluctuation phenomenon has the following property,
which indicates that the residual fluctuation has the
aggregation, and further shows that the residual distribution
is asymmetric and there may be conditional
heteroscedasticity [8]. In order to prove this conjecture, the
conditional heteroscedasticity test is carried out on this
basis, that is, the ARCH effect test is carried out on the
residuals. This test is shown in B 1))

Date: 08/10/20 Time: 15:47
Sample: 1/04/2000 6/08/2020
Included observations: 5328

Autocorrelation Partial Correlation AC PAC Q-Stat Prob
1 -0.000 -0.000 0.0012 0.972
| | 2 0.003 0.003 0.0429 0.979
| | 3 0034 0034 62210 0101
i ] 4 0072 0.072 33666 0.000
| | 5 0.000 0.000 33.667 0.000
0 0 6 -0.059 -0.061 52.004 0.000
| | 7 0027 0.022 55851 0.000
| [ 8 0.010 0.006 56.408 0.000
| 9 -0003 0001 56443 0.000
10 -0.018 -0.011 58.134 0.000
| | 11 0.031 0.027 63.125 0.000
| | 12 0033 0028 68768 0.000
| | 13 0.056 0.060 85.298 0.000
14 -0.038 -0.038 93.013 0.000
| | 15 0048 0041 10523 0.000
| | 16 0.014 0.005 106.30 0.000
17 -0.005 -0.007 106.41 0.000
18 0015 0019 107.55 0.000
19 -0.034 -0.037 113.82 0.000
[ [ 20 0.014 0.005 114.87 0.000
[ | 21 0004 0012 11497 0000
| 22 0.000 -0.000 114.97 0.000
23 -0.025 -0.023 118.28 0.000
[ [ 24 0014 0010 119.38 0.000
| | 25 0.010 0.004 119.93 0.000
26 -0.016 -0.015 121.22 0.000
27 -0.004 -0.000 121.33 0.000
| | 28 0.042 0.034 130.89 0.000
| | 29 0006 0.005 131.11 0.000
Fig. 12. Autocorrelation graph of residuals.
Null Hypothesis: F has a unit root
Exogenous: Constant
Lag Length: 5 (Automatic - based on SIC, maxlag=32)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -29.52152 0.0000
Test critical values: 1% level -3.431398
5% level -2.861888
10% level -2 566998

*MacKinnon {1996) one-sided p-values.

Fig. 13. Unit root test chart of residuals.

The author test the unit root of residuals and draw
autocorrelation graphs. It can be found in Fig. 12 that the
residuals have passed the unit root test, and the values of
autocorrelation coefficient and partial autocorrelation
coefficient in the autocorrelation graph are also very low.
Therefore, we can believe that the residual has reached the
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level of white noise, which indicates that the AR (1) model
has a good fitting degree and the model information has
been fully utilized.

Redefining the residuals, the author test the unit root of
the newly generated sequence as can be seen in Fig. 13.

B. GARCH Model

1) The selection of GARCH model

When GARCH model is used, the data dx of the first
order difference is also used. Before fitting the GARCH
model, it is necessary to observe whether the data has arch
effect. [9] First, de average the sequence dx, that is, define
w=dx-mean, and then conduct correlation test on the square
of w to make the residual square correlation graph, as
shown in Fig. 6-Fig. 10. Through the residual square
correlation graph, we can find that P value is less than the
significance level, the sequence has autocorrelation, not
white noise time series, so there is ARCH effect. Because
the unit root test results are stationary data, it can fit
GARCH model.

2) Model testing

Before establishing GARCH model, ARCH effect should
be tested first. In actual financial data processing,
autoregressive conditional heteroscedasticity model is
widely used, abbreviated as ARCH(q).

Investigating the variance homogeneity of the original
time series, the residual time series after square processing
obviously shows the characteristics of heteroscedasticity. At
this time, it needs to be further processed. [10]

According to the above analysis results, the residual time
series of AR model has heteroscedasticity, asymmetry and
non-normality. Most of the previous studies focused on the
assumption that the random error term obeys the normal
distribution. In this paper, the author assume that the
random perturbation term of the mean equation obeys the
generalized error distribution (GED) distribution, and on the
basis of this analysis, the author choose to add the wave
term to the mean equation, that is, the GARCH-M model
proposed by Engle et al. These models can not only
describe the autoregressive conditional heteroscedasticity
process, but also introduce the wvolatility into the
corresponding regression equation. In addition to describing
some other factors affecting the return of financial assets,
they can also reflect the impact of return volatility on the
return of financial assets.

@ Fitting GARCH model

The commonly used GARCH models are GARCH (1,1),
GARCH (1,2), GARCH (2,1), GARCH (2,2), therefore use
each model to establish model:

a) GRACH(1,1) modeling

It can be seen from Fig. 14 that the coefficient P values
are all 0, which can pass the test and the model can be
established. GARCH (1,1) model is the most common
model in this kind of analysis. Although it may not be the
optimal model here, it is necessary to analyze it. It can be
seen from GARCH model that a [1] is 0.055990, B [1] is
0.945578, and the sum of them is 0.9989, which is close to
1. At this time, it can be considered that the volatility shows
high persistence. In addition, from the  [1] of 0.945578, it
can be seen that the volatility has a very slow decay rate,
which shows that volatility has obvious clustering
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characteristics. This can also show that during this period,
when the fluctuation of Shanghai stock index is impacted,
the fluctuation will be large and continuous.

Dependent Variable: W

Method: ML - ARCH (Marquardt) - Normal distribution
Date: 06/10/20 Time: 16:43

Sample (adjusted): 1/05/2000 6/08/2020

Included observations: 5329 after adjustments
Convergence achieved after 50 iterations

Presample variance: backcast (parameter = 0.7)
GARCH = C(1) + C(2)"RESID(-1)*2 + C(3)*GARCH(-1)

Variable Coefficient  Std. Error  z-Statistic Prob.
Variance Equation
C 3.551901 0.588425 6.036286 0.0000
RESID(-1)2 0.055990 0.001757 31.86161 0.0000
GARCH(-1) 0.945578 0.001061 891.1664 0.0000
R-squared -0.000041 Mean dependent var 0.287115
Adjusted R-squared 0.000147 S.D. dependent var 45.00412
S.E. of regression 4500081  Akaike info criterion 9.786158
Sum squared resid 10791615  Schwarz criterion 9.789863
Log likelihood -26072.22 Hannan-Quinn criter. 9.787452
Durbin-Watson stat 1.8936311

Fig. 14. Parameter estimation of GARCH(1,1) model.

b) GARCH(1,2) modeling
Variable Coefficient ~ Std. Error  z-Statistic Prob.
Variance Equation

C 2.547698 0.453581 5616850 0.0000
RESID(-1)"2 0113718 0.006090 18.67361 0.0000
RESID(-2)"2 -0.069289 0.006653 -10.41474 0.0000
GARCH(-1) 0.956600  0.001261 758.7901 0.0000
R-squared -0.000041  Mean dependent var 0.287115
Adjusted R-squared 0.000147 S.D. dependent var 4500412
S.E. of regression 45.00081  Akaike info criterion 9.782602
Sum squared resid 10791815  Schwarz criterion 9.787541
Log likelihood -26061.74 Hannan-Quinn criter. 9784327

Durbin-VWatson stat 1.935311

Fig. 15. Parameter estimation of GARCH(1,2) model.

It can be seen that in Fig. 15 the coefficient P is 0, so the
model can be established.
¢) GARCH(2,1) modeling

Variable Coefficient ~ Std. Error  z-Statistic Prab.
Variance Equation

o 4746952 0846762  5.606007  0.0000
RESID(-1)*2 0076679 0003169 2419760  0.0000
GARCH(-1) 0.476881 0.078674  6.061508  0.0000
GARCH(-2) 0448318  0.075993  5.899437  0.0000
R-squared -0.000041  Mean dependent var 0287115
Adjusted R-squared 0.000147  S.D. dependent var 45.00412
S.E. of regression 45.00081 Akaike info criterion 9.784513
Sum squared resid 10791615 Schwarz criterion 9.789453
Log likelihood -26066.84 Hannan-Quinn criter. 9786239

Durbin-Watson stat 1.935311

Fig. 16. Parameter estimation of GARCH(2,1) model.

It can be seen in Fig. 16 that the coefficient P is 0, so the
model can be established.

d) GARCH(2,2) modeling

Variable Coefficient  Std. Error  z-Statistic Prob.
Variance Equation

C 8531191 1428245 5973188 0.0000
RESID(-1)'2 0.055775  0.002272  24.55311 0.0000
RESID(-2)"2 0.077329  0.005672 13.63450  0.0000
GARCH(-1) -0.004827 0021876  -0.220845 0.8254
GARCH(-2) 0.877443 0022512  38.97746 0.0000
R-squared -0.000041  Mean dependent var 0287115
Adjusted R-squared 0.000147 S.D. dependent var 4500412
S.E. of regression 4500081  Akaike info criterion 9.785909
Sum squared resid 10791615  Schwarz criterion 9792084
Log likelihood -26069 56  Hannan-Quinn criter. 9 788066

Durbin-Watson stat 1.835311

Fig. 17. Parameter estimation of GARCH(2,2) model.
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It can be seen in Fig. 17 that the p value of G1 is greater
than the confidence level of 0.05, which cannot pass the test
and the model cannot be established.

According to the test results, the sum of a/ij and g/i] in
GARCH (1,1), GARCH (1,2), GARCH (2,1), GARCH (2,2)
are  0.9846,1.0351,0.9851,0.9670  respectively,  the
difference is not significant, and there is no obvious sign of
exceeding the expectation.

Nevertheless, only GARCH (1,1), GARCH (1,2),
GARCH (2,1) coefficients all passed the test, and the AIC
of the three were 9.7862, 9.7826, 9.7845, and SC were
9.7898, 9.7875 and 9.7894 respectively. Judging from the
method of judging the minimum value, GARCH (1,2)
model is better, so the model can be better fitted.

V.

A. Short Term Forecast

The author use the effective model ARMA (1,1) to make
short-term forecast. There are two kinds of forecasting
methods: dynamic forecast and static forecast. The former is
multi-step forward prediction according to a certain
estimation interval selected; the latter is only rolling
forward prediction, that is, every time the prediction is
made, the real value is replaced by the predicted value,
added to the estimation interval, and then the forward
prediction is made.

PREDICTION OF THE MODEL

B. Dynamic Forecast

The predicted values are stored in the DXF sequence. At
this time, it can be observed from Fig. 18 and Fig. 19 that
the dynamic relationship between the original sequence dx
and dxf. At the same time, select dx and dxf, right-click,
click open/as group, and then click view/graph/line, and
then the following figure will appear. Dynamic prediction is
almost a straight line, which shows that the dynamic
prediction effect is not good.
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Fig. 18. Dynamic prediction chart.
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Fig. 19. Effect diagram of dynamic prediction.
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C. Static Forecast

The static prediction is shown in the Fig. 20 below. The
prediction is still stored in DXF. The DX and DXF charts
show that the static prediction effect is good.
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Fig. 20. Static prediction chart.

Forecast results: as shown in Fig. 21 below, the
fluctuation range of static forecast price is not large in the
increase of 8 days, which are all around the average value
of 2901.34.
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Fig. 21. Effect diagram of static prediction.

VI. CONCLUSION

To sum up, from the criterion of the smaller the better, it
can found that GARCH (1,2) model is the best, so the
author also adopt GARCH (1,2) model. In the model, it is
considered that there is leverage effect (that is, leverage the
larger capital with less capital to improve the yield) [11],
and if a positive and negative impact of the same size can
be exerted at this time, the negative impact will bring more
obvious impact.

From the analysis, it is not difficult to see that the
GARCH group model can well fit the stock market in China.
From the model of this paper, it can be seen that the Prob.
value of all index mean equation and variance equation is
0.0000. It can be said that under 1% confidence level, the
Shanghai Composite Index of China can be well fitted by
GARCH model, and the model is very significant. Secondly,
the selected Shanghai stock index model shows the
volatility state in line with the financial market. The sample
data show the characteristics of peak thick tail and left
deviation, as well as volatility clustering (high volatility and
low volatility of the stock market tend to gather in a certain
period of time, and their periods will appear alternately).

In addition, some scholars pointed out that it is a means
of economic regulation for the government to adjust the
price level through the stock market. The government hopes
that the purpose of the rise of the stock market is to
highlight direct financing, reduce the leverage of the real
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economy and obtain a slightly higher leverage in the capital
market. In this sentence, it has been known from the
GARCH (2,2) model above that there is indeed leverage
effect. Therefore, comparing the analysis results with the
actual situation, the author think that the results of the
model are more reasonable.

Finally, the research of this paper still has some
limitations, because the time series of stock price is quite
complex. For the future research and analysis, the author
can summarize its periodicity more accurately and forecast
the stock price more accurately, so as to know the
decision-making of managers and investors. In addition,
only the closing price is selected as the predictor, and the
sample number of stock price is not very large. The author
only study ARMA model and GARCH model. These
shortcomings need to be corrected in the follow-up research
work to get a better prediction.
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