
  

Abstract—Sourcing performance measurement in Supply 

Chain Quality Management is carried out under uncertain and 

changing conditions. This paper proposes a methodology for 

uncertainty modeling of Sourcing Performance using Fuzzy 

Grey Cognitive Maps and Design of Experiments. This 

methodology has four steps: (i) Selection of model variables, (ii) 

Determination of causal relationships, (iii) Construction of the 

model, and (iv) Dynamic performance of the model with Design 

of Experiments. The application of the fractional factorial 

design validated the adequate dynamic functioning of the 

model and allowed identifying the factors that have a 

significant effect on the response variable.  

 
Index Terms—Design of experiments, fuzzy grey cognitive 

maps, sourcing performance, supply chain quality 

management. 

 

I. INTRODUCTION 

Supply Chain Management (SCM) is the coordination of 

production, inventory, location, and transportation to 

achieve the best possible performance in responsiveness and 

efficiency in a supply chain [1].  SCM involves planning, 

design, and control of the flow of materials, information, 

and money throughout the supply chain to deliver superior 

value to the end customer effectively and efficiently [2]. 

SCM is based on collaboration between companies to 

achieve common strategic positioning and improved 

operational efficiency [3]. SCM involves logistics 

management and other processes such as Quality 

Management [4]. 

On the other hand, the focus of Quality Management (QM) 

has shifted from the traditional company-centric scenario to 

complete supply chain systems. This shift in focus has 

caused a change in the competitive priorities of many 

companies, from product quality to the overall quality of the 

supply chain [5]. Thus, Supply Chain Quality Management 

(SCQM) is the result of the integration of SCM and QM and 

their evolution from an operational approach to a strategic 

approach. 

SCQM is the coordination and integration of business 

processes in the supply chain to measure, analyze and 

improve products, services, and processes, to create value 

and achieve the satisfaction of all customers [6]. SCQM 

refers to the QM practices aimed to improve supply chain 

overall performance and develop a single approach to 

synchronously manage issues related to QM in every supply 

chain stage [7]. 
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refers to issues in which the decision maker does not know 

what to decide and is confused about the objectives, lacks 

information about the supply chain and its environment, 

lacks information about process capabilities and is unable to 

predict the impact of possible control actions on the 

behavior of the supply chain [8]. The supply chain 

uncertainty involves some limitations when implementing 

performance measurement systems under deterministic 

methods approach, since they require knowing the data 

inputs value of the system. 

Therefore, this paper proposes a methodology for 

uncertainty modeling of Sourcing Performance using Fuzzy 

Grey Cognitive Maps and Design of Experiments (DOE). 

The modeling approach used in this work focuses on the 

analysis of the variables' interaction strength regarding the 

Sourcing Performance in Supply Chain Quality 

Management. The results allow establishing possible 

degrees of impacts of the changes made in a variable with 

respect to other state or response variables through a 

multiple linear regression model. 

 

II. LITERATURE REVIEW 

Fuzzy Cognitive Maps (FCMs) are a combination of 

fuzzy set theory with heuristic learning of neural networks 

[9]. FCMs consists of variables or concepts (C) that 

represent the studied system and directed arcs that represent 

the causal relationships between the concepts. The concepts 

are denoted with the subscripts i (cause node) and j (effect 

node). Each directed arc has a weight wij in the interval [-1, 

+1], which represents the strength of the relationship 

between i and j. 

Besides, Fuzzy Grey Cognitive Maps (FGCMs) are an 

extension of FCMs and constitute a flexible modeling 

approach based on Grey Systems Theory [10]. FGCMs 

allow modeling uncertainty in the weight values of the 

relationships between variables, assigning them grey 

numbers instead of the exact values of the FCM (Fig. 1). 

A grey number (⊗g) is one whose exact value is 

unknown, but the range within which this value is included 

is known. A grey number is an interval that can have only a 

lower limit, only an upper limit, or both a lower limit and an 

upper limit. 

When the grey number has a lower limit (g) and an upper 

limit (ḡ), it is known as the interval grey number. 

Consequently, in a FGCM the weights of the causal 

relationships between concepts i and j are measured in terms 

of their grey intensity and are expressed as: 

 

⊗wij ∈ [ ij, ij] │ ij ≤ ij, { ij, ij} ∈ [-1, +1] (1) 
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Fig. 1. Example of a FGCM with four concepts. 

 

The study of the FGCM convergence is a topic of 

growing interest since the incorporation of grey values in the 

interrelations affects the inference process. In some cases, a 

simplification approach is used, taking as the white value 

the midpoint of the grey weight range, reducing the FGCM 

to an FCM, which can lead to erroneous conclusions. On the 

other hand, running the inference process with all possible 

combinations of the interrelations could lead to non-feasible 

solutions [11]. 

Regarding the application of FGCMs in SCQM, some 

works stand out. Haeri and Rezaei [12] developed a supplier 

selection model by incorporating sustainability criteria and 

FGCMs to analyze interdependences using grey values of 

relationship weights. In [13] was proposed a model to 

analyze the causal relationship between organizational 

culture and supply chain performance, using FGCMs, grey 

clustering and multiple fuzzy inference. In [14] used 

FGCMs for evaluating and modeling causal relations into a 

reliability analysis of an electric power system. 

 

III. METHODOLOGY 

The proposed methodology consists of four steps: (i) 

Selection of Model Variables, (ii) Determination of Causal 

Relationships, (iii) Construction of the Model, and (iv) 

Dynamic Performance of the Model with DOE. This section 

shows the development of the first two stages and the next 

section shows what corresponds to the three remaining 

stages. 

A. Selection of Model Variables 

The selection of the state variables and the response 

variable that represent Sourcing Performance in Supply 

Chain Quality Management was carried out considering the 

works of [7], [15]–[19]. Table I shows the model variables, 

specifying their type, description and assigned ID. 

 
TABLE I: MODEL VARIABLES 

Type Variable Description ID 

Response/ 

Dependent 

Sourcing 

Performance 

Quality performance level of 

sourcing. Its result depends on 

the influence and interaction of 

the state variables. 

C1 

State/ 

Independent 

Suppliers 

perfect orders  

(%) 

It is used to evaluate and 

monitor suppliers regarding 

compliance with the agreed 

negotiation conditions of times, 

product quality, delivery 

conditions and complete 

information. 

C1,1 

Rejections 

and returns to 

They are due to breaches of the 

specifications agreed in the 
C1,2 

suppliers (%) negotiation by the suppliers 

and cause reprocessing and 

delays in operations because of 

the return of raw material to 

the supplier. 

Sourcing Fill 

Rate (%) 

It measures the fulfillment 

percentage regarding all the 

items ordered from the supplier 

and has a close relationship 

with the service level of the 

suppliers. 

C1,3 

Ordering 

Cost ($) 

The cost of issuing a purchase 

order. It includes 

administrative, communication, 

or related fixed costs. 

C1,4 

B. Determination of Causal Relationships 

Table II shows the interrelationships of the variables, 

using the previous coding. Since it is necessary to validate 

the strength of these interrelationships, their weight (w) is 

not assigned an exact value, but a grey value that, 

additionally, incorporates the uncertainty of Supply Chain 

Quality Management. 

 
TABLE II: INTERRELATIONSHIPS OF VARIABLES 

Cause 

node (i) 

Effect 

node (j) 

Weight 

notation 

Interval 

⊗wij 

C1,1 C1 ⊗w1,1→1 [0.8, 1.0] 

C1,2 C1 ⊗w1,2→1 [-1.0, -0.8] 

C1,3 C1 ⊗w1,3→1 [0.8, 1.0] 

C1,4 C1 ⊗w1,4→1 [-0.6, -0.4] 

C1,1 C1,2 ⊗w1,1→1,2 [-1.0, -0.8] 

C1,1 C1,4 ⊗w1,1→1,4 [-1.0, -0.9] 

C1,2 C1,3 ⊗w1,2→1,3 [-0.6, -0.4] 

C1,2 C1,4 ⊗w1,2→1,4 [-0.6, -0.4] 

C1,3 C1,4 ⊗w1,3→1,4 [-1.0, -0.9] 

 

IV. RESULTS 

A. Construction of the Model 

The construction of the Sourcing Performance model in 

Supply Chain Quality Management using fuzzy grey 

cognitive maps was carried out by combining the 

information from Tables I and II and configuring them in 

the structure shown in Fig. 2.  

 

C1

C1,1

C1,2

C1,3

C1,4

[0.8, 1.0]

[-1.0, -0.8]

[0.8, 1.0]

[-0.6, -0.4]

[-1.0, -0.8]

[-1.0, -0.9]

[-0.6, -0.4]

[-0.6, -0.4]

[-1.0, -0.9]

 
Fig. 2. FGCM Model for Sourcing Performance. 

 

B. Dynamic Performance of the Model with DOE 

Validation of the model dynamic performance was carried 

out using a fractional factorial design in the inference 

process [20]. The factors are the interrelationships between 

concepts and are defined based on Table I. The experiment 

objective is to determine the main factors and their effects 
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on the response variable (sourcing performance) and to 

confirm the selection of concepts and their interrelationships, 

as well as the use of intervals or exact numbers for the 

interrelationships weights.  

The low and high levels of the factors correspond to the 

minimum and maximum values of the respective grey 

number (Table III). Considering the number of factors (nine), 

a 29-4 design with resolution IV and 32 simulation runs was 

selected. 

The simulation experiment performance was carried out 

using the self-memory Kosko activation function [21]. The 

results analysis of the experiment showed that the effects of 

double and triple interactions are not significant. The 

analysis of variance (Table IV) and the standardized Pareto 

chart of effects (Fig. 3) show that the effects of the main 

factors are significant, except for factor I, which 

corresponds to the relationship C1,3 → C1,4 (from Sourcing 

Fill Rate to Ordering Cost). 

This implies that the weight of this relationship can be 

specified using a concrete number, generally the mean value 

of interval (w1,3→1,4 = -0.95). When this effect is excluded 

from the analysis of variance, an adjusted coefficient of 

determination of 99.3% is obtained. The Durbin-Watson 

(DW) statistic for the residuals was 1.7408 (P = 0.2045), 

which indicates that there is no evidence of serial 

autocorrelation in the residuals, with a significance level α = 

0.05. 

 
TABLE III: FACTORS AND LEVELS OF THE EXPERIMENT 

Factor Relationship Low High 

A C1,1→C1 0.8 1.0 

B C1,2→C1 -1.0 -0.8 

C C1,3→C1 0.8 1.0 

D C1,4→C1 -0.6 -0.4 

E C1,1→C1,2 -1.0 -0.8 

F C1,1→C1,4 -1.0 -0.9 

G C1,2→C1,3 -0.6 -0.4 

H C1,2→C1,4 -0.6 -0.4 

I C1,3→C1,4 -1.0 -0.9 

 

TABLE IV: THE ANOVA TABLE FOR THE EXPERIMENT 

Source 
Sum of 

squares 
DF 

Mean 

squares 
F-Value P-Value 

A:Factor_A 0.005465 1 0.005465 2324.00 0.0000 

B:Factor_B 0.001714 1 0.001714 728.85 0.0000 

C:Factor_C 0.003172 1 0.003172 1348.83 0.0000 

D:Factor_D 0.000417 1 0.000418 177.58 0.0000 

E:Factor_E 0.000621 1 0.000622 264.18 0.0000 

F:Factor_F 0.000014 1 0.000015 6.20 0.0208 

G:Factor_G 0.000257 1 0.000258 109.56 0.0000 

H:Factor_H 0.000019 1 0.000019 7.91 0.0101 

I:Factor_I 0.000009 1 0.000009 3.66 0.0688 

Error 0.000052 22 0.000002   

Total 0.011741 31    

 

 
Fig. 3. Standardized Pareto Chart of Effects for Sourcing Performance. 

 

This result is consistent with previous work where it was 

proven that in joint decision making in supply chains the 

target Fill Rate should be specified in advance in the 

contract and that the impact of its variation is not significant 

in reducing costs [22]. Also, it is not realistic or beneficial 

for supply chain partners to have low Fill Rate indicators or 

high variability. Generally, the determination of the target 

Fill Rate is a compromise solution with the total costs of the 

logistics system and the proper approach is to establish the 

best possible cycle count configuration given a set of items 

[23]. 

Finally, the experiment results allow obtaining a multiple 

regression model to predict the value of the response 

variable in the inference process using Fuzzy Grey 

Cognitive Map in the analysis of Sourcing Performance (SP): 

 
SP = 0.8254 + 0.0131 ⊗w1,1→1 ∈ [0.8, 1] + 0.0074 ⊗w1,2→1 ∈ [-

1, -0.8] + 0.00996 ⊗w1,3→1 ∈ [0.8, 1]  + 0.00361 ⊗w1,4→1 ∈ [-
0.6, -0.4] – 0.00441 ⊗w1,1→1,2 ∈ [-1, -0.8] – 0.00067 ⊗w1,1→1,4 ∈ 
[-1, -0.9] + 0.00284 ⊗w1,2→1,3 ∈ [-0.6, -0.4]  - 0.00077 ⊗w1,2→1,4 

∈ [-0.6, -0.4] – 0.00052*(-0.95) 
 

V. CONCLUSION 

A Fuzzy Grey Cognitive Map model was developed to 

address uncertainty in the Sourcing Performance 

measurement. The model integrates design of experiments 

to evaluate the convergence and the significant effects of the 

main factors. Thus, the use of design of experiments 

provides a new alternative for analyzing Fuzzy Grey 

Cognitive models. 

This modeling methodology allowed to quantify the 

capacity of the selected factors to explain the changes in the 

response variable. These results also validate the choice of 

concepts and weights of the interrelationships of the model. 

This makes it possible to adequately deal with the 

uncertainty inherent to these models without resorting to 

generalizations with concrete values of the relationships 

strength between concepts. 

The modeling methodology of Sourcing Performance in 

Supply Chain Quality Management developed in this paper 

has a flexible scheme that is adaptable to the conditions of 

supply chains or specific sectors. For its application in each 

context, it is essential to have historical data that allow 

obtaining knowledge of the variables interrelationships 

strength using multivariate descriptive statistical analysis. 

CONFLICT OF INTEREST 

The author declares no conflict of interest. 

REFERENCES 

[1] M. Hugos, Essentials of Supply Chain Management, 4th ed. Hoboken, 

NJ: John Wiley & Sons, 2018. 

[2] N. Sanders, Supply Chain Management: A Global Perspective, 2nd ed. 

Hoboken, NJ: John Wiley & Sons, 2018. 

[3] D. Bowersox, D. Closs, M. Cooper, and J. Bowersox, Supply Chain 

Logistics Management, 5th ed. New York, NY: McGrawHill, 2020. 

[4] P. Romano and A. Vinelli, “Quality management in a supply chain 

perspective,” Int. J. Oper. Prod. Manag., vol. 21, no. 4, pp. 446–460, 

2006. 

[5] C.-H. Kuei and C. N. Madu, “Identifying critical success factors for 

supply chain quality management (SCQM),” Asia Pacific Manag. 

Rev., vol. 6, no. 4, pp. 409–423, 2001. 

Journal of Economics, Business and Management, Vol. 10, No. 5, October 2022

333



[6] C. J. Robinson and M. K. Malhotra, “Defining the concept of supply 

chain quality management and its relevance to academic and 

industrial practice,” Int. J. Prod. Econ., vol. 96, no. 3, pp. 315–337, 

2005. 

[7] J. M. Cogollo-Flórez and A. A. Correa-Espinal, “Analytical modeling 

of supply chain quality management coordination and integration: A 

literature review,” Qual. Manag. J., vol. 26, no. 2, pp. 72–83, 2019. 

[8] L. Zhang, S. Wang, F. Li, H. Wang, L. Wang, and W. Tan, “A few 

measures for ensuring supply chain quality,” Int. J. Prod. Res., vol. 49, 

no. 1, pp. 87–97, 2011. 

[9] M. León, C. Rodriguez, M. M. García, R. Bello, and K. Vanhoof, 

“Fuzzy cognitive maps for modeling complex systems,” in Proc. the 

9th Mexican International Conference on Artificial Intelligence, 

MICAI 2010, 2010, pp. 166–174. 

[10] J. Salmeron, “Modelling grey uncertainty with fuzzy grey cognitive 

maps,” Expert Syst. Appl., vol. 37, no. 12, pp. 7581–7588, 2010. 

[11] E. Lavin and P. Giabbanelli, “Analyzing and simplifying model 

uncertainty in fuzzy cognitive maps,” in Proc. the 2017 Winter 

Simulation Conference, 2017, pp. 1868–1879. 

[12] S. A. S. Haeri and J. Rezaei, “A grey-based green supplier selection 

model for uncertain environments,” J. Clean. Prod., vol. 221, pp. 

768–784, 2019. 

[13] L. G. Zanon, F. Marcelloni, M. C. Gerolamo, and L. C. Ribeiro 

Carpinetti, “Exploring the relations between supply chain 

performance and organizational culture: A fuzzy grey group decision 

model,” Int. J. Prod. Econ., vol. 233, p. 108023, 2021. 

[14] J. L. Salmeron and E. Gutierrez, “Fuzzy grey cognitive maps in 

reliability engineering,” Appl. Soft Comput. J., vol. 12, no. 12, pp. 

3818–3824, 2012. 

[15] S. T. Foster, Managing Quality: Integrating the Supply Chain, 6th ed. 

New Jersey: Pearson, 2017. 

[16] Y. Amer, L. Luong, and S. H. Lee, “Case study: Optimizing order 

fulfillment in a global retail supply chain,” Int. J. Prod. Econ., vol. 

127, no. 2, pp. 278–291, 2010. 

[17] S. Luthra, K. Govindan, D. Kannan, S. K. Mangla, and C. P. Garg, 

“An integrated framework for sustainable supplier selection and 

evaluation in supply chains,” J. Clean. Prod., vol. 140, pp. 1686–

1698, 2017. 

[18] J. Coyle, J. Langley, R. Novack, and B. Gibson, Supply Chain 

Management: A Logistics Perspective, 10th ed. Boston, USA: 

Cengage Learning, 2017. 

[19] S. Chopra, Supply Chain Management: Strategy, Planning, and 

Operation, 7th ed. New York: Pearson, 2018. 

[20] I. Lorscheid, B. O. Heine, and M. Meyer, “Opening the ‘black box’ of 

simulations: Increased transparency and effective communication 

through the systematic design of experiments,” Comput. Math. Organ. 

Theory, vol. 18, no. 1, pp. 22–62, 2012. 

[21] A. Christoforou and A. S. Andreou, “A framework for static and 

dynamic analysis of multi-layer fuzzy cognitive maps,” 

Neurocomputing, vol. 232, pp. 133–145, 2017. 

[22] D. Choudhary, R. Shankar, M. K. Tiwari, and A. K. Purohit, “VMI 

versus information sharing: An analysis under static uncertainty 

strategy with fill rate constraints,” Int. J. Prod. Res., vol. 54, no. 13, 

pp. 3978–3993, 2016. 

[23] S. Gumrukcu, M. D. Rossetti, and N. Buyurgan, “Quantifying the 

costs of cycle counting in a two-echelon supply chain with multiple 

items,” Int. J. Prod. Econ., vol. 116, no. 2, pp. 263–274, 2008. 

 

Copyright © 2022 by the authors. This is an open access article distributed 

under the Creative Commons Attribution License which permits 

unrestricted use, distribution, and reproduction in any medium, provided 

the original work is properly cited (CC BY 4.0). 

 

Journal of Economics, Business and Management, Vol. 10, No. 5, October 2022

334

https://creativecommons.org/licenses/by/4.0/

	721-F1050



