
 

Abstract—Revenue management models have evolved through 

time; the benefits and implementation complexity have increased. 

Large hotel chains have successfully implemented revenue 

management models; in contrast, small hotels lag in adoption. We 

propose a simplified revenue management model more suitable 

to be adopted by small hotels. We simulate customer attendance 

using parameters from a travel agency. We adapt two popular 

revenue management from airlines to a small hotel system, and 

we describe a method to find the optimal parameters for each 

model. We compare the revenue's performance in the system, and 

we prove a revenue increase by implementing our models. Finally, 

we propose a simplification based on the single capacity allocation 

model and suggest a set of business rules for implementation. 
 

Index Terms—Revenue management, simulation modeling, 

numerical optimization, hotel management.  
 

I. INTRODUCTION 

A Revenue Management (RM) model improves the income 

of a system. Their basic concept is to find the right price for 

the right customer at the right time. RM models have been 

implemented in highly competitive sectors a defined customer 

segmentation, at least with two customer groups. One pays less 

by booking the product or service in advance, and the other 

pays more by booking with limited time.  

The literature review for RM in the airline industry is 

abundant, and models have evolved to incorporate more 

factors. E. Shlifer and Y. J. T. S. Vardi [1] proposed a full 

airline booking policy for companies. R. W. Simpson [2] 

proposed a rejection policy to accept bookings only if the 

current booking revenue is higher than the expected revenue 

for future bookings. S. L. Brumelle and J. I. McGill [3] include 

the overbooking factor in the RM models for Air Fare. A. 

Gosavi et al. [4] and A. M. Fouad et al. [5] developed further 

research on overbooking and cancellation policies. B. Vinod 

[6] made an analysis of the revenue management system by 

origin and destination city. J. L. Higle [7] extended this view 

by adding a stochastic programming approach for the same 

problem. 

In contrast, the research of RM models in the hotel industry 

is relatively new. S. E. Kimes [8] initially proposed the idea of 

yield management for hotels and restaurants without a sense of 

dynamic pricing. G. R. Bitran and S. V. Mondschein [9] 

consider the management of dynamic prices when a customer 

stays multiple days in a hotel [10], R. D. Badinelli [11] suggest 

dynamic policy management for hotels with low capacity. J. 

Wirtz et al. [12] explores the fairness. M. Müller-Bungart [13] 

dedicates a section in his book to consolidate the main RM, 

[14] revisit the RM [15] make a study case where he reports 

revenues improvement by applying RM models in hotels 

between 2% to 5%. S. E. Kimes [16] provides an overview of 

the future of RM in hotels, suggesting that the whole industry 

has to implement them in the same way as the airline industry 

did.  

The increase of computational power has made popular 

meta-heuristic techniques in optimization. A. Nuno et al. [17] 

uses machine learning techniques to predict the cancellation of 

bookings. K. Subulan et al. [18] revisit RM models and 

propose a self-adjusted optimization function. W. H. 

Lieberman [19] considers robotics and actual pricing to be an 

opportunity area for optimizing RM models. E. Hertzfeld [20] 

highlights the use of Expanded AI in the models. The trend on 

Revenue Management models is moving to optimization self-

adjusting systems focusing on large hotel chains. R. Thomas 

et al. [21] highlights the importance of small participants in the 

sector, and they recognize the challenge of having a definition 

of small hotels. The most general description of hotels is by 

the number of rooms. We focus on models suitable for small 

hotels with less than 30 rooms. In this paper, we do a business 

financial study to simulate a hotel booking system and 

implement traditional Airline RM models: nested capacity 

single/ double allocation [22] and resource bid Price [2]. We 

propose a simplification suitable to be implemented in small 

hotels. 
 

II. NESTED CAPACITY ALLOCATION 

The nested capacity allocations, also known as the booking 

limit, were first proposed by K. Littlewood [22], and it was 

thoroughly extended by P. Belobaba [23]. The booking limit 

approach consists of reserving a specific amount of space for 

each type of customer. The model defines an optimal 

combination between business and tourist customers to 

maximize the revenue in the system for each capacity. Under 

this approach, a fixed number of spaces are allocated for 

business customers out of the total capacity. A trivial example 

is when we know business customers arrive often and the 

capacity is one; in this case, the system allocates the available 

space for them; in other words, bookings in advance are not 

allowed. The single allocation considers only one constraint; 

the double allocation considers two constraints. For example, 

the one restriction model allocates rooms by a certain customer 

type; the two restrictions model allocates rooms by a certain 

customer type and by a specific weekday of arrival. The 

challenge of nested capacity allocation models is finding the 

right proportion of allocated spaces for each customer type. 

We refer to the process to find this proportion as model 

calibration. 
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III. RESOURCE BID PRICES 

The resource bid pricing model was proposed by R. W. 

Simpson [2] and extended by E. L. Williamson [24]. This 

model consists of constructing a price matrix based on 

customers’ total arrivals from both classes (business and 

tourist). The model requires the expected price per night for 

bookings. Using this value, we will create an expected revenue 

function. The expected revenue function is also referred to as 

bid prices. This expectation is a combination of the rejected 

parameter and the probability distribution function that 

includes a capacity constraint. We use the bid price function to 

compare the revenue of the current booking against the 

expected revenue. A new customer is accepted if the current 

booking price exceeds the sum of the bid price per night. 

The capacity constraint and the hotel's current occupancy 

play an essential role in the bid price function.  If the capacity 

is close to being reached, customers from the tourist class are 

rejected, expecting a business class customer to arrive. If there 

are two spaces available, at least two business class bookings 

should come to make profitable the decision to reject the 

current booking. If there are three spaces available, at least 

three business class customers should arrive. It is most likely 

that one business customer arrives than two, it is more likely 

that two business customers arrive than three, and so on. The 

probability of arrival of a business customer is a function of 

the number of spaces available. 

In the model, the business customer follows a Poisson 

distribution. The probability that at least X business customers 

arrive in the system is given by equation (1): 

𝑃(𝑋) = 1 ∑ [exp(−𝐷) (
𝐷𝑋𝑖

𝑋𝑖!
)]

𝑋

𝑖=0

 

where 𝑋  is the spaces remaining in the system, 𝐷  is the 

duration of nights of the customer at the hotel. The main 

assumptions of the model are: the value of the money through 

the time is not considered, the hotel does not accept 

cancellations; therefore, the system receives full income once 

the booking is accepted, when a booking is rejected, there is 

not a possibility to return in another period, the income of 

rejected bookings is lost permanently. 

The system rejects the booking if the current booking 

revenue is lower than the expected potential revenue of a new 

booking. The potential revenue is calculated by equation (2) 

𝑃𝑅 = 𝑃(𝑋) (𝑝(𝐵))  

where 𝑃𝑅: potential revenue, 𝑃(𝑋) : probability that at least 𝑋 

business customers arrive in the system, and 𝑝(𝐵): average 

prices per night estimated from historical data or simulated 

values. This equation accepts customers only if their revenue 

is higher than the potential revenue per night of news 

customers. Sometimes, the expected price may not reflect the 

reality of the pricing; we can apply some techniques to 

improve this factor. In this paper, we propose to set 𝑝(𝐵)  as 

the maximum price per night (maximum rate of high paying 

customer 𝑝(𝐵)+) and to add a rejection parameter. By setting 

𝑝(𝐵)+ as a fixed value, we focused only on finding the optimal 

�̂� parameter for the system. We modify equation (2) as follows:  

𝑃𝑅 = 𝑃(𝑋)(𝑝(𝐵)+)(𝜃)  

where 𝑃𝑅: potential revenue, 𝑃(𝑋): the probability that at least 

𝑋  business customers arrive in the system, and 𝑝(𝐵)+ : 

maximum price per night that the system allows, and θ 

rejection parameter. 

 
Fig. 1. The classification of customers is based on the median of the days in 

advance of the bookings. A tourist customer registers a booking more days in 

advance than a business customer. 

 

IV. METHODOLOGY 

Data availability in the sector is highly restricted; the 

booking data is considered part of the business know-how, and 

it is not shared at a granular level. Most of the published papers 

related to RM modeling in hotels rely on Monte Carlo 

simulations. The demand behavior in hotels is generally 

divided into seasons, summer season: from 31/Mar to 30/Sep 

and winter season: from 01/Oct to 31/Mar. We managed to get 

high-level parameters from a travel agency; the high-level 

parameters explain the customer influx (accepted and rejected 

customers) of a small hotel in a US city during the summer. 

Demand in summer overpasses the capacity; therefore, 

implementing a revenue management system takes more 

relevance. We focus our research on small hotels with 5 to 30 

rooms 

Small hotels divide the customer into two types: business 

and tourist, commonly differentiated by the median of the days 

of booking in advance. Fig. 1 shows a visualization of the 

division of business and tourist customer by the median. A 

tourist customer registers a booking with more days in advance 

than a business customer; we have the rate of arrival of the 

customer by weekday, the average and variance of days of 

booking in advance, and the number of nights per customer 

type. The summary of the agency's parameters is in Table I and 

Fig. 2 shows the arrival rate by each class of customer over the 

different days of the week. Business customers arrive mostly 

on Sun, Mon, Tue, and Wed (Group 1). Tourist  arrive mostly 

on Thu, Fri, Sat (Group 2). 

 
TABLE I: DEMAND PARAMETERS FROM TRAVEL AGENCY 

Advance All Business Tourist 

Mean μ𝑎 19.56 6.18 32 

Std σ𝑎 19.61 3.87 20.16 

Median 15 6 25 

Duration All Business Tourist 

Mean μ𝑑 3.94 3.53 4.33 

Std σ𝑑 3.12 2.96 3.21 

Arrivals p/day All Business Tourist 

Sun 5.85 4.23 1.62 

Mon 6.88 6.69 0.19 

Tue 3.42 3.19 0.23 

Wed 2.81 1.77 1.04 

Thu 6.77 0.69 6.08 

Fri 6.96 0.19 6.77 

Sat 2.69 0.27 2.42 

 

(1)

(2)

(3)

Journal of Economics, Business and Management, Vol. 10, No. 6, December 2022

358



 
Fig. 2. There is clear trend of the arrival day for business and tourist 

customers. Business customers arrive mostly on Sun, Mon, Tue, and Wed 

(Group 1). Tourist  arrive mostly on Thu, Fri, Sat (Group 2). 

 

We use agency parameters to simulate client attendance. We 

assume Poisson distributions for arrivals and Normal 

distributions for days in advance, and the number of nights. 

The parameters for the simulation are in Table II. 

Firstly, we simulate customer demand for 365 days 

(simulation period); for the analysis, we consider only 184 

days (summer period: from 31/Mar - 30/Sep) to match agency 

parameters. We study the simulated customer attendance under 

two capacity scenarios: 10 and 20 rooms. Secondly, we 

propose a method to calibrate the capacity allocation (single-

double) and the resource bid prices model. Thirdly, we 

compare the RM models using the optimal parameters to the 

No Model (NM) implementation scenario, and we also extend 

this comparison to other author’s works. Finally, we select the 

RM model that is most suitable to be implemented in a small 

hotel. We increase the number of simulations to propose a 

generalized model; we test our proposal under different 

conditions and suggest a set of business rules. 

 
TABLE II: PARAMETERS FOR SIMULATION 

Parameter   Business customer   Tourist customer 

𝐵𝑛     ∼  N(6.18,  3.872)   ∼ 𝑁(32, 20.162) 

𝐷𝑛   ∼ 𝑁(3.53, 2.962)   ∼ 𝑁(4.33, 3.212) 

λ𝑆𝑢𝑛   ∼ 𝑃(4.23)   ∼ 𝑃(1.62) 

λ𝑀𝑜𝑛  ∼ 𝑃(6.69)   ∼ 𝑃(0.19) 

λ𝑇𝑢𝑒  ∼ 𝑃(3.19)   ∼ 𝑃(0.23) 

λ𝑊𝑒𝑑 ∼ 𝑃(1.77)   ∼ 𝑃(1.04) 

λ𝑇ℎ𝑢  ∼ 𝑃(0.69)   ∼ 𝑃(6.08) 

λ𝐹𝑟𝑖  ∼ 𝑃(0.19)  ∼  𝑃(6.77) 

λ𝑆𝑎𝑡  ∼  P(0.27)   ∼ 𝑃(2.42) 

 

A. Client Attendance Simulation 

We use a Monte Carlo simulation to replicate a hotel 

system's behavior similar to P. Jonhson’ result [25]. Each 

customer booking has three attributes: booking time (𝑡𝑏) , 

arrival time (𝑡𝑎) , and departure time (𝑡𝑑) . The simulation 

function for a 𝑛 number of customers 𝐶𝑛 in a given day 𝑡𝑘 is 

model by 4,  

𝐶𝑛 =
𝑡𝑎 =
𝑡𝑏 =
𝑡𝑑 =

||

𝐶1 𝐶2 . . . 𝐶𝑛

𝑡𝑘 + 𝐴1 𝑡𝑘 + 𝐴2 . . . 𝑡𝑘 + 𝐴𝑛

𝑡𝑎𝐶1
− 𝐵1 𝑡𝑎𝐶2

− 𝐵2 . . . 𝑡𝑎𝐶𝑛
− 𝐵𝑛

𝑡𝑎𝐶1
+ 𝐷1 𝑡𝑎𝐶2

+ 𝐷2 . . . 𝑡𝑎𝐶𝑛
+ 𝐷𝑛

||  

where 𝐶𝑛: customer booking i of n customers (𝐶𝑛  simulates ∼
𝑃(λ) times), 𝑡𝑘 is a given day of the simulation (day 1, day 2,..., 

day 365) of 𝐾 simulated days, 𝑡𝑎: day of arrival, 𝑡𝑏: time of 

booking, 𝑡𝑑 : time of departure, 𝐴𝑛 ∼ 𝑈(0,0.499) , 𝐵𝑛 ∼

𝑁(μ𝑎, σ𝑤𝑑𝑎
), 𝐷𝑛 ∼ 𝑁(μ𝑑 , σ𝑑).  

 

 
Fig. 3. This figure shows the customer occupancy of each day for the 

simulation by customer type before any capacity constraint. We selected only 

the summertime (from 91 to 274) for the study. 

 

For example, to simulate the influx and parameters of 

business customers that arrive on Saturday, February 24th, 

2018. 𝑡𝑘=55 (𝑘 day of the year), the number of customers 𝐶𝑛  

simulates ∼ 𝑃(0.27)  times, 𝐴𝑛 ∼ 𝑈(0,0.499) , 𝐵𝑛 ∼
𝑁(6.18, 3.872), 𝐷𝑛 ∼ 𝑁(3.53, 2.962). The system works with 

round numbers; this means that the customers pay a full night 

whether they arrive very late or leave very soon in the morning. 

The function to determine whether if the customer is in the 

hotel or not (pays a full night) is 

(𝐶𝑖) = {

1 𝑖𝑓 𝑡𝑘 ≤ 𝑡𝑎 < 𝑡𝑘+1

1 𝑖𝑓 𝑡𝑘 < 𝑡𝑑 < 𝑡𝑘+1 and 𝑡𝑎 < 𝑡𝑑

1 𝑖𝑓 𝑡𝑎 < 𝑡𝑘 and 𝑡𝑑 > 𝑡𝑘+1

0 𝑖𝑓  Otherwise 
where 𝑡𝑘  is the actual day of the simulation, and the other 

variables are the same as in equation (4). 

The price for a given customer (𝐶𝑖) depends on the number 

of days in advance and the number of nights of each booking. 

The more days the customer books in advance and the more 

days a customer stays, the lower their price per night. The price 

parameters vary by season, city, and hotel size; the travel 

agency provides an insight into how the price is calculated for 

small hotels during summer. In our systems, the price per night 

is determined by equation 

𝑝(𝐶𝑖) = α +
2

𝐷
β +

7

𝐴
Γ  

where 𝑝(𝐶𝑖):  price per night, 𝐷: duration of nights of the 

customer at the hotel (𝑡𝑑 − 𝑡𝑎), 𝐴: number of days in advance 

of the booking (𝑡𝑎 − 𝑡𝑏 ), α, β, Γ: positive constant with the 

following values: α = 60, β = 30, Γ = 30. Value 2 relates to 

the limit where the hotel is willing to start offering a discount 

for a longer stay; value 7 is associated with the point where the 

hotel is willing to offer a discount for booking in advance. The 

maximum price per night is $330.00 when the customer stays 

a single night (𝐷 = 1) and makes the booking the minimum 

days in advance (𝐴 = 1). 

The simulation is represented in Fig. 3. The booking 

simulation period starts from 1 to 365 days (day 1, day 2, day  

𝑡𝑘 , ..., day 365); we use parameters from ~ Table II. We 

simulate arrivals for business and tourist customers; we merge 

(4)

(5)

(6)
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both data sets and sort them by booking time. Despite having 

the two simulation data sets from business and tourist 

customers, their classification is based on the median of the 

days in advance of the bookings, the same as a small hotel 

normally does. The customers can book any room within the 

simulation period; the analysis period covers only the summer 

season, from 91 to 274 (184 days). 

 

V. RESULTS 

We simulated customers arrivals for 365 days for two 

classes of customers (business and tourist) using parameters 

from Table II. The tourist customers make bookings in 

advance; for this reason, during the initial days of the 

simulation, they do not arrive at the hotel;  tourists also make 

bookings in the last days, they book to arrive after the period 

of the simulation (day 365); this effect is known as “simulation 

tails”. The tails in the simulation affect the revenue calculation.  

We focused our analysis on the summer period (from day 91 

to 274), where we do not have “simulation tails."  The hotel 

occupancy by type of customer from the simulation is shown 

in Fig. 3. The maximum number of rooms required to satisfy 

the demand is 34; the average occupancy for business 

customers is 8.2, and 12.2 for tourist customers. 

We studied the behavior of the bookings under two capacity 

constraints: 10 and 20 rooms. In a No Model (NM) scenario, 

the hotel accepts the customers as they make the bookings. The 

results of the simulation under NM implementation are 

presented in Table III. Tourist customers get more rooms 

because they book before business customers; the fewer rooms 

available, the more % of tourist customers in the hotel. 

 
TABLE III: RESULTS OF SIMULATION ADDING CAPACITY CONSTRAINT 

No model (NM)    10 rooms   20 rooms   No restriction 

Rev ($k) $144.60  $288.40  $385.10  

# Cust. 464 813 958 

%Bus 31.50% 41.70% 47.40% 

%Tou 68.50% 58.30% 52.60% 

 

A. Optimization 

An RM model finds the right balance between business and 

tourist customers to maximize revenue. We use the simulated 

data set to find the optimal parameters for both models: nested 

capacity single/double Allocation and resource bid pricing 

model. The single allocation model is calibrated by increasing 

the percentage of allocated rooms for business customers out 

of the total capacity and comparing each scenario's revenue; 

we explore all possible combinations between business and 

tourist customers. For example, for a capacity of 10 rooms, we 

recreate the income for the hotel when zero rooms are allocated 

for business customers and ten rooms for tourist customers 

[0,10], then one room for business customers and nine rooms 

for tourists [1,9], [2,8], [3,7], ..., [10,0]. The optimal number 

to allocate for business customers is when we get the highest 

revenue.  The results of the calibration process are in Fig. 4; 

the revenue reaches a peak and then decreases when we have 

more rooms allocated for business customers. For the single 

allocation model, the optimal parameter for capacity 20 rooms 

is  35% business customers  (seven business, thirteen tourists 

[7,13]); for capacity 10 rooms is 40% business customers (four 

business, six tourists [4, 6]). 

The double allocation model adds an additional restriction 

for tourist customers. We allocate more rooms for the business 

customers by blocking bookings in advance that arrive on the 

weekdays where business customers most commonly arrive, 

refer to Fig. 2. For a given number of rooms allocated for 

business customers, we evaluate the combination for tourist 

customers in the weekday group two. For example, for a 

capacity of 10 rooms, we review the revenue when 0 rooms are 

allocated for business customer and 10 rooms for tourist 

customers to arrive on Sundays, Mondays, Tuesdays or 

Wednesdays (weekday group 1) and 0 rooms for tourist 

customer to arrives on (weekday group 2) [0,10,0],  then for 0 

rooms for business customers and 9 rooms for tourists 

customers weekday group 1, and 1 room for tourist weekday 

group 2, then [0,9,1], [0,8,2], [0,7,3],  ..., [1,9,0], [1,8,1], 

[1,7,2], ..., [10,0,0]. The optimal number to allocate for the 

business customers and tourist's weekday group is when we 

get the highest revenue. The dots in Fig. 4 shows the 

calibration process for the double allocation model; the 

optimal parameters for capacity 20 rooms is 35% business 

customers (seven business, eleven tourist group 1, two tourist 

group 2 [7,11,2]; for capacity 10 rooms is 40% business 

customers (four business, five tourist group 1, one tourist 

group 2 [4,5,1].  

On the other hand, in the bid pricing model, we find the 

optimal rejection parameter (𝜃) from equation (3). 𝑝(𝐵)+ is 

calculated from equation (6) considering a customer who 

books with no days in advance for a single night ($330). The 

optimal �̂� is a value between 0 and 1; when 𝜃 =  1, the system 

rejects those customers who are not paying the maximum rate, 

we over reject customers. In contrast, when 𝜃 =  0, the system 

does not reject any customer; this scenario is equivalent of not 

implementing any model (NM). The bid pricing model accepts 

or rejects a customer considering the probability that new 

costumers that pay more arrive, regardless of the customer type 

(business or tourist). We find the �̂� that maximized the revenue, 

and the process is in Fig. 5. The �̂� for capacity 20 rooms is 0.3, 

and for capacity 10 rooms is 0.42. 

B. Models Results 

We studied the single allocation, the double allocation, and 

the bid pricing models using the optimal parameters and 

comparing them to letting the customers arrive as they book; 

this is equivalent as No Model (NM) implementation. Fig. 6 

shows the customer occupancy per day in the hotel by type of 

customer for a capacity constrain of 10 rooms; the charts 

shows that under NM implementation, the hotel accepts more 

tourist customers; under the single and double tourist 

customers are limited to a given number of rooms; under the 

resource bid pricing the business customers occupancy varies 

per day. The behavior is similar for a capacity constraint of 20 

rooms.  

All the Revenue Models (RM) in this study increased 

revenue compared to NM implementation. The numerical 

results are presented in Table IV. The single and double 

allocation models have similar results for both capacities. In 

the scenario where the capacity of the hotel is 10 rooms, the 

best model is the resource bid pricing, it increased the revenue 

8.15%, almost twice as the single (4.34%) and the double 

allocation (4.07%);  results in the capacity of 10 contrast to the 
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capacity 20 scenario; in this scenario,  the bid pricing was the 

worse, increasing the revenue only by 0.48%, the best model 

is the double allocation with 1.67% increase, follow by the 

single allocation with a 1.59% increase.  The results show that 

the impact of the revenue management model is higher when 

the capacity is lower. 

 

 
Fig. 4. This figure shows how the revenue behaves as the %  of rooms allocated 

for business customers increase. The solid line shows the result for the single 

allocation model, the optimal parameters for capacity 20 rooms:  35% business 

customers (seven business, thirteen tourists); for capacity 10 rooms: 40% 

business customers (four business, six tourists). The dots show the results for 

the double allocation model, and we add the weekday condition; the optimal 

parameters for capacity 20 rooms: 35% business customers (seven business, 

eleven tourists group 1, two tourists group 2; for capacity 10 rooms: 40% 

business customers (four business, five tourists group 1, one tourist group 2. 

 
TABLE IV: RM MODELS W/ OPTIMAL PARAMETERS VS NO MODEL (NM) 

10 rooms   NM   Single   Double   Bid Pricing 

Rev ($k)  $144.60  $150.90  $150.50  $156.40  

% vs NM  0% 4.34% 4.07% 8.15% 

# Cust.  464 453 450 546 

%Bus  31.50% 51.90% 53.60% 48.40% 

%Tou  68.50% 48.10% 46.40% 51.60% 

20 rooms   NM   Single   Double   Bid Pricing 

Rev ($k)  $288.40  $292.90  $293.20  $289.80  

% vs NM  0% 1.59% 1.67% 0.48% 

# Cust.  813 796 795 826 

 

C. Results Comparison to Other Authors 

We compared the results of this paper to other authors who 

used similar RM models in the hotel sector. The data set used 

by each of the authors is not available, we cannot perform a 

direct comparison, the revenue amounts, demand parameters, 

pricing, and capacity are different in each work.  The 

comparison has no intention to suggest that some work is better 

than the other, Table V is presented for reference purposes only, 

we used the percentage of improvement in revenue. 

 The % average improvement across all the papers is 9.9%, 

although we cannot make a direct comparison, this 

improvement seems to be equivalent to the benefits reported in 

the Airlines (10% improvement year over year), [26]. 

 

 
Fig. 5. This figure shows how the hotel's revenue behaves in the resource bid 

pricing model as the rejection parameter increases. If 𝜃 =  1 , the system 

rejects those customers who are not paying the maximum rate, we over reject 

customers; if 𝜃 =  0, the system does not reject any customer at all; The 𝜃 for 

capacity 20 rooms: 0.3 and form capacity 10 rooms: 0.42. 

 

TABLE V: COMPARISONS TO OTHER AUTHORS 

Autor   % improvement   Model 

This paper 1.59%-4.34% 
Single allocation - 

optimization 

This Paper 1.67%-4.07% 
Double allocation - 

optimization 

This Paper 0.48%-8.15% 
Bid pricing - 

optimization 

(Kimes, 2010) – [15] 2%-5% 
Price - 

segmentation 

(Baker & Collier, 2003) – 

[26]  
~10% 

Heuristic - Price 

setting 

(Pimentel et al., 2019) – 

[27] 
~20.2% 

Price setting -  

overbooking 

(Nuno et al., 2017) – [17] 11.8%- 26.4% 
Machine learning -  

overbooking 

 

D. Proposal 

The most recent RM models for hotels concentrate on 

heuristic and machine learning techniques; although these new 

models, according to the authors, improve the system's 

revenue, they become more complex, and their 
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implementation requires hiring costly resources; these models 

seem to be restricted only to large hotel chains. This paper 

focuses on small hotels, and we propose the most feasible 

model to be implemented in this sector. Instead of moving in 

the direction of machine learning and heuristic methods (more 

complex models), we move to model simplification; the single 

allocation model provides a simple rule to accept or reject 

customers that most likely any small hotel can implement.  

 
Fig. 6. Using a capacity constraint of 10 rooms, under NM implementation, 

the hotel accepts more tourist customers; under the single and double 

allocation model, the tourist customers are limited to a given number of rooms; 

under the bid pricing model, the business customers occupancy varies per day. 

 

The data availability in small hotels is related to fiscal 

obligations, and we consider any small hotel has at least ten 

years of data; for this reason, we extend the client attendance 

Monte Carlo simulation to ten simulations, this equivalent to 

getting data from a hotel for the last ten summers.  

We find the optimal mix for the optimal % of business 

customers using the single allocation model. We replicate the 

optimization process for all capacities between 5 and 25 to find 

the optimal value points; the gray dots in Fig. 7 show the % of 

revenue increase compared to the NM scenario.   

The exponential equation keeps a simple interpretation for 

the optimal % of business customers to allocate by not 

allowing negative values. We use the optimal values points to 

fit them to a set of exponential functions. These functions help 

the hotel administrator to accept or reject customers.  

The upper model considers only the maximum value point 

of each capacity; this model intends to get the maximum 

revenue increase, however, it may over-reject customers. On 

the other hand, the lower model considers only minimum 

optimal points of each capacity; this model fixes the over-

rejection by accepting more tourist customers, as a result, it 

sacrifices a portion of the revenue improvement. The central 

model considers all the optimal values, and it offers a solution 

in the middle; Our recommendation is to with the central 

model. 

Fig. 7 shows a set of exponential functions that adjust to 

optimal values; the solid line is the central model; the dashed 

lines represent the upper and lower models and they use only 

the maximum and the minimum data points.  The dotted lines 

represent the "central models" under the scenarios where the 

demand increases/decreases ±  30%; we recreated the 

simulation and optimization process by changing demand 

parameters ± 30%. The equations for each of the models are 

in Table VI. 

 
TABLE VI: PROPOSAL MODELS FUNCTIONS 

Model    % of business customers  Data points used 

Central 0.8936𝑒(−0.052)𝐶𝑎𝑝   All 

Upper 1.4643𝑒(−0.062)𝐶𝑎𝑝   Max of each cap  

Lower 0.5036𝑒(−0.058)𝐶𝑎𝑝    Min of each cap 

30% 0.9397𝑒(−0.046)𝐶𝑎𝑝    All, w/+30% demand 

-30% 0.8067𝑒(−0.072)𝐶𝑎𝑝    All, w/ -30% demand 

 

E. Proposal's Validation 

We consider each of the equations in Table VI a model that 

can be used to determine the optimal number of rooms for 

business customers in a small hotel with a given capacity. Let's 

consider a small hotel with a total of 15 rooms. The hotel 

administrator can use the central model (0.8936𝑒(−0.052)(15) =
13) and allocate 13 rooms for the business customers for the 

season; if the administrator thinks the demand may vary ± 

30%, he can use the  +30% model to allocate 13 or the -30% 

model to allocate 11 rooms for business customers. On the 

other hand, if the administrator wants to cover any increased 

fluctuation over the last 10 years, he can use the upper model 

to allocate all capacity for business; or the lower model for any 

decreased fluctuation to allocate 7 rooms for business 

customers. 

We want to evaluate how good (or bad) the models are. We 

validate the performance of the models using each of the 
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simulations for capacities between 5-30 rooms. We test each 

of the models proposed using the ten years simulation data set. 

We compare the average revenue improvement of the models 

versus the No Model (NM) scenario versus the optimal values. 

We additionally measure the % of times the models are better 

than the NM scenario, the average of % of revenue when the 

models are above and below the NM scenario. The numerical 

results are in Table VII. 

 
Fig. 7. We used the results of the ten simulated years to find the optimal % of 

business customers for each capacity (optimal data points). The solid line is 

the central model (optimal function) using all data points; the dashed lines 

represent the upper and lower models using only maximum and minimum data 

point for each capacity; the dotted lines is the central model (optimal functions) 

when the customer demand increases or decreased ± 30%. Using these models, 

we build a set of business rules. 

 

Let's analyze the central, upper, and lower models.  The 

upper model is the closest to the optimal values providing an 

average 3.2% of improvement, but only when it is above the 

NM (65% of the times). This contrasts to the lower model that 

offers more certainty to the result by improving the revenue 

1.6%,  90% of the times. The lower model is recommended for 

risk-averse hotel administrators.  The central model provides 

intermediate results between the upper and lower model by 

increasing 2.9% the revenue, 85% of the times.  

Fig. 8 provides a visualization of the result by each of the 

capacities in the evaluation. The gray dots represent the 

maximum % of revenue (optimal) from the calibration process; 

the black dots represent the results of implementing the model; 

a good performing model is when gray and black dots are 

closer; a bad one is when dots are separate. Negative values 

imply that the model is not better than the NM scenario. 

The customer's arrivals vary from season to season. For this 

reason, we also evaluate how robust the central model to ± 30% 

demand change. When the demand increases, the central 

model keeps improving the revenue by 3.5%, 93% of the times. 

Therefore, the central model is robust to demand increases, and 

the hotel administrator can keep using the central model 

without any adjustment. On the other hand, when the demand 

decreases, the central model still improves the revenue by 1.6% 

but only 65% of the times. We can validate these conclusions 

by observing the fourth graph in Fig. 8. The central model 

keeps improving the revenue for capacities lower than 12; 

from that point onward, the recommendation is to adjust the 

rejection rule to model "-30%" from Table VI.  

The results provide a set of functions to determine the 

optimal strategy. The strategy adapts to demand variation and 

hotel administrator's risk-aversion level. The collection of 

models proposed improves the revenue, is simple to implement, 

and the hotel administrator can move quickly from one to 

another according to demand variations.  

 
Fig. 8. We compare the performance of models using the simulated data. The 

gray dots represent the maximum % of revenue (optimal) from the 

optimization process; the black dots represent the results of implementing the 

model; a model's good performance is when gray and black dots are closer; a 

bad performance is when dots are separate. Negative values imply that the 

proposed model is not better than a No Model implementation. 

 
TABLE VII: REVENUE PERFORMANCE OF OPTIMAL VALUES AND PROPOSAL 

MODELS VERSUS NO MODEL (NM) 

Cap 5-30 Central Upper Lower -30% +30% 

Optimal 3.20% 3.20% 3.20% 1.80% 4.20% 

Proposal 2.40% 1.70% 1.40% 0.90% 3.20% 

% times is 

above NM 
85% 65% 90% 65% 93% 

When above 2.90% 3.20% 1.60% 2.00% 3.50% 

When below -0.40% -1.10% -0.20% -1.30% 0.40% 
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VI. CONCLUSIONS 

The hotel sector is one of the few industries where small 

participants still play an essential role, and small hotels keep 

growing, [28]. These numbers highlight the importance for the 

small hotel administrators to continue innovating and keep 

maintain market share. 

We confirmed that it is possible to implement RM models 

from the airline industry in a small hotel system. We 

implemented the single/double allocation model [22] and the 

bid pricing model from [2], (initially proposed for airlines) in 

a small hotel system. Data availability in the sector is highly 

restricted, the booking data is considered part of the business 

know-how and is not typically shared. We got high-level 

parameters of a small hotel in a US city during the summer 

period from a travel agency; we use agency parameters to 

simulate the client attendance, similar to [25]. Small hotels 

divide the customer into two types: business and tourist, 

commonly differentiated by the median of the days of booking 

in advance. 

We proposed a method to calibrate the Capacity Allocation 

(single-double) and the resource bid prices model for two 

capacity scenarios: 10 and 20 rooms.  We compare the RM 

models using the optimal parameters to the No Model (NM) 

implementation scenario; all the Revenue Models (RM) in this 

study increased revenue. The results show that the impact of 

the revenue management model is higher when the capacity is 

lower. 

As a reference, we compared our results to other authors 

with similar RM models in the hotel sector. The % average 

improvement across all the papers is 9.9%. Although we 

cannot make a direct comparison, the number seems to be 

equivalent to the benefits reported in the Airlines (10% 

improvement year over year), [26]. There is an opportunity in 

the small hotel sector for adopting RM models.  

S. E. Kimes [16] suggests that the hotel sector will be using 

RM models shortly, the same as the Airlines Industry did. This 

projection may be a risk for small hotels if they do not quickly 

adopt these techniques. The trend on Revenue Management 

models is moving to optimization self-adjusting systems 

focusing on large hotel chains. We want to facilitate the usage 

of RM models in small hotels considering their limited 

resources. 

The single allocation model improved the revenue in all the 

capacity scenarios we studied. Although the single allocation 

model is not the best all the time, it is the easiest to optimize. 

The process consists of iterating the number of rooms allocated 

for business customers; for these reasons, we considered that 

this model is the most suitable to be implemented in a small 

hotel. 

The results provided a set of functions to determine an 

optimal decision rule for accepting or rejecting the customer 

demand in a small hotel. The strategy adapts to demand 

variation and hotel administrator's risk-aversion level. The 

collection of models proposed improves the revenue, is simple 

to implement, and the hotel administrator can move quickly 

from one to another according to demand variations.  We know 

each city has its own customers demand, but the small hotels 

have historical data for at least ten years (related to fiscal 

obligations). Therefore, any small hotel administrator can use 

the historical demand and iterates the number of rooms to 

allocate for the business customers to find the optimal values 

to fit them to exponential functions and determine their own 

business rules. Using the methodology proposed in this paper 

is much simpler than implementing some heuristic or machine 

learning RM models in the small hotel sector. 
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