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Abstract—Data envelopment analysis (DEA) has been a 

popular method of measuring production performance of a 

group of decision-making units (DMUs) utilizing same types of 

inputs to produce outputs. DEA has been applied to many 

studies including studies on the performance of hospitals, banks, 

airlines, and schools. However, despite of its popularity, DEA 

still suffers from some inadequacies. For instance, it sometimes 

may overestimate efficiencies of some DMUs by applying weight 

sets with extreme values. Furthermore, it lacks discriminating 

power among efficient DMUs, since all efficient DMUs have the 

same efficiency scores. In this paper, we propose a methodology 

which attempts to identify DMUs which efficiencies are possibly 

overstated by DEA and provides a common set of input and 

output weights for ranking DMUs. A common set of weights 

sometimes is useful when studying tradeoffs between different 

inputs and outputs in DEA especially when different inputs can 

be traded and obtaining a full rank of DMUs. 

 
Index Terms—Common set of weights, cross-efficiency score, 

data envelopment analysis, performance measure.  

 

I. INTRODUCTION 

Charnes, Cooper, and Rhodes [1] introduced data 

envelopment analysis (DEA) as a method to measure relative 

production performance among a group of decision-making 

units (DMUs). Since its introduction, many studies have 

applied DEA to measure production performance of a variety 

of DMUs. Nowadays, DEA becomes a very popular and 

important method in performance measure. Suppose there are 

n decision making units, DMUj (j = 1,2,…,n), each of which 

has m inputs xij (i = 1,…, m) and s outputs yrj (r = 1,…, s). The 

maximum relative efficiency of a decision-making unit, 

DMUo can be obtained from the following linear 

programming (LP) model [1], usually known as CCR model: 
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where ur (r = 1,…, s) and vi (i = 1,…, m) are factor weights for 
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output r and input i,  respectively. DMUo is efficient if, 

      
 
          otherwise is inefficient. Another version 

of the CCR model requires ur, vi ≥ ε, where r = 1,…, s; i = 

1,…, m; and ε is a very small positive number. 

Recently, DEA models using common set of weights have 

been studied by some researchers. Lam [2] uses common set 

of weights to determine the most efficient DMU in DEA. 

Ramezani-Tarkhorani, Khodabakhshi, Mehrabian and 

Nuri-Bahmani [3] rank DMUs using common set of weights 

in DEA. Omrani [4] applies common weights data 

envelopment analysis with uncertain data. Chiang, Hwang 

and Liu [5] use a separation vector to determine a common 

set of weights. Lam and Bai [6] minimize the input and 

output weights from their means using common set of 

weights. Wang, Luo and Lan [7] use common weights for 

fully ranking DMUs by regression analysis. Jahanshahloo, 

Hosseinzadeh Lotfi, Khanmohammadi, Kazemimahesh and 

Rezaie [8] rank DMUs by positive ideal DMU with common 

weights. Lam [9] determines appropriate weight set to 

compute cross efficiency in DEA.  

One of the drawbacks in DEA is that all efficient DMUs 

have the same efficiency score; this makes it very difficult to 

differentiate between more efficient units to less efficient 

units among the efficient group. Another common weakness 

of DEA is that extremely diverse or unusual values of some 

input or output weights which are difficult to explain in the 

context of a rational economy might be obtained for the target 

unit. These weights could lead to overstating the efficiencies 

of some DMUs. This can be explained by the excess 

flexibility in choosing weights in DEA. Some DMUs become 

efficient only because extreme values of weight sets are used 

to maximize their efficiencies. In this paper, we propose a 

two-step methodology finding a common set of weights. Step 

one identifies DMUs which efficiencies are possibly 

overstated by DEA. Then based on the results from step one, 

step two determines a set of input and output weights to rank 

DMUs. 

 

II. LINEAR PROGRAMMING AND DISCRIMINANT ANALYSIS 

Let A be an (nk) matrix representing k attribute scores of a 

known sample of n observations from two groups, G1 and G2. 

Hence, aij is the value of the ith attribute for the jth observation 

in the sample. Freed and Glover [10] proposed a linear 

programming model, minimizing the sum of deviations 

(MSD) in discriminant analysis as follows: 
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where h and wi, for i=1,…, k, are unrestricted in sign and dj ≥ 

0, for j=1,…, n.  

A normalization constraint is needed in MSD to avoid 

trivial solutions (i.e. solutions where all variables equal to 

zero). Examples of normalization constraints can be found in 

[11], [12]. Other forms of LP models in discriminant analysis 

can be found in [13], [14].  

 

III. A TWO-STEP METHOD 

We propose to use a method utilizing both cross-efficiency 

in DEA and linear programming in discriminant analysis, to 

identify less efficient DMUs in the efficient set and to 

provide a common set of weights for performance rankings of 

DMUs. The proposed method requires two steps: 

A. Step One 

DEA is used to determine the efficiency score and the 

weight set for each DMU. Then based on the n weight sets 

obtained from DEA, calculate the average cross-efficiency 

score for each DMU. The average cross-efficiency score of a 

DMU is computed by taking the average of n efficiency 

scores which are calculated by the n weight sets obtained 

from DEA. Let λ be the highest average cross-efficiency 

score among all inefficient DMUs. We then divide DMUs 

into two classes. Class 1 (C1) contains efficient DMUs where 

their average cross-efficiency scores are also greater than λ. 

Class 2 (C2) contains inefficient DMUs and also efficient 

DMUs which average cross-efficiency scores are less than or 

equal to λ. In short, DMUs in C2 are less efficient DMUs 

since either they are inefficient or they have relatively low 

average cross-efficiency scores. The intuition behind this is 

that since DEA sometimes may overestimate efficiencies of 

some DMUs by using extremely diverse or unusual values of 

weights, as a result, cross-efficiency scores may be used to 

detect efficiencies of efficient DMUs by comparing their 

average cross-efficiency scores with λ. If the average 

cross-efficiency score of an efficient DMU is less than λ, then 

we have reasons to belief that those DMUs are not as efficient 

as other efficient DMUs and its efficiencies may be 

overstated.  

B. Step Two 

We solve the following MILP model: 
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where           εis a very small positive number, M is a 

large positive number; ur, vi ≥ 0, r = 1, . . . , s; I = I, . . . , m.   

DMUs in C1 are expected to be more efficient than those in 

C2. Constraints in (8) enforce the efficiency scores of DMUs 

in C1 to be greater than or equal to one. If the efficiency score 

is less than one, then value of zj is forced to one and receives a 

unit penalty in the objective value. On the contrary, DMUs in 

C2 are expected to be less efficient than DMUs in C1, as a 

result, if the weighted sum of output is not less than the 

weighted sum of input by a magnitude of ε, then values of zj 

are forced to one by constraints in (9). The objective function 

of MILP minimizes the sum of zj, or in other words, it 

minimizes the number of misclassifications according to the 

classification scheme of C1 and C2 obtained from Step one 

above. Constraint (10) is a normalization constraint to avoid 

the trivial solution. The obtained ur and vi can be used to 

compute efficiency scores for all DMUs. In the next section, 

we will examine the performance of MILP in ranking DMUs 

via a simulation experiment.  

 

IV. A SIMULATION EXPERIMENT 

In DEA, efficiency of a DMU is measured by an efficiency 

score, which is the sum of weighted outputs divided by the 

sum of weighted inputs of the DMU as shown below: 

 
      

 
   

      
 
   

                             

 

Efficient DMUs have efficiency scores equal to one, while 

inefficient DMUs have efficiency scores less than one. 

In this simulation experiment we assume that the 

production function takes the following simple linear form:  

 

       

 

   

       

 

   

                            

 

where E(ε) = 0. 

We generate data set with three inputs and three outputs, 

that is m = s = 3. All input scores and output scores are 

generated from a uniform distribution. Three different weight 

sets are used, namely, W1 = {v1=1; v2=1; v3=1; u1=1; u2=1; 

u3=1}, W2 = {v1=1; v2=4; v3=7; u1=1; u2=4; u3=7} and W3 = 

{v1=1; v2=1; v3=1; u1=1; u2=4; u3=7}. Furthermore, we 

generate three different classes of DMUs, namely, 

Super-Efficient DMU, Efficient DMU, and Inefficient DMU. 

To simulate an Efficient DMU, the sum of weighted inputs 

equals the sum of weighted outputs as in equation (12). To 

simulate an Inefficient DMU, we randomly add more inputs 

to and subtract some amount of outputs from an Efficient 

DMU. As a result, for an Inefficient DMU, the sum of 

weighted inputs is more than the sum of weighted outputs. 

Similarly, to simulate a Super-Efficient DMU, we randomly 

subtract some inputs from and add more outputs to an 

efficient DMU. Hence, for a Super-Efficient DMU, the sum 
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of weighted inputs is less than the sum of weighted outputs. 

In two-third of the simulated cases we generate only Efficient 

DMUs and Inefficient DMUs. In one-third of the simulated 

cases, we include Super-Efficient DMUs to emphasize the 

situation that in reality some efficient DMUs may perform 

better than other efficient DMUs, since in reality, it is very 

unlikely that all efficient DMUs have the same degree of 

efficiency. 

We generate 18 different cases using two different sample 

sizes, three different values of weight sets, and three different 

mixes of efficient and inefficient DMU. The layouts of the 18 

cases are summarized in Table I. 

 
TABLE I: LIST OF 18 CASES IN THE SIMULATION EXPERIMENT 

Case Sample 

Size 

Weight Set 

{v1 v2 v3} {u1 u2 u3} 

Mix of DMUs in the 

three Efficiency Classes: 

(A   E   I)* 

1 60 {1  1  1} {1  1  1} (0.2   0.2   0.6) 

2 60 {1  1  1} {1  1  1} (0.0   0.4   0.6) 

3 60 {1  1  1} {1  1  1} (0.0   0.2   0.8) 

4 60 {1  4  7} {1  4  7} (0.2   0.2   0.6) 

5 60 {1  4  7} {1  4  7} (0.0   0.4   0.6) 

6 60 {1  4  7} {1  4  7} (0.0   0.2   0.8) 

7 60 {1  1  1} {1  4  7} (0.2   0.2   0.6) 

8 60 {1  1  1} {1  4  7} (0.0   0.4   0.6) 

9 60 {1  1  1} {1  4  7} (0.0   0.2   0.8) 

10 20 {1  1  1} {1  1  1} (0.2   0.2   0.6) 

11 20 {1  1  1} {1  1  1} (0.0   0.4   0.6) 

12 20 {1  1  1} {1  1  1} (0.0   0.2   0.8) 

13 20 {1  4  7} {1  4  7} (0.2   0.2   0.6) 

14 20 {1  4  7} {1  4  7} (0.0   0.4   0.6) 

15 20 {1  4  7} {1  4  7} (0.0   0.2   0.8) 

16 20 {1  1  1} {1  4  7} (0.2   0.2   0.6) 

17 20 {1  1  1} {1  4  7} (0.0   0.4   0.6) 

18 20 {1  1  1} {1  4  7} (0.0   0.2   0.8) 

*A=Super-Efficient DMU, E=Efficient DMU, I=Inefficient DMU 

 

In the simulation experiment, we want to compare the 

performance of the two methods: DEA and MILP in ranking 

efficiencies of DMUs. The performance is measured by the 

correlations between efficiency scores of the method and the 

true efficiency scores. The true efficiency score is the 

simulated score. The higher the correlation, the closer is the 

estimated ranking to the true ranking, hence the better the 

performance. We perform the following paired t-test to 

compare the performance of ranking DMUs using DEA and 

MILP:  

Ho: There is no difference between the mean Spearman’s 

rho correlation coefficient of MILP with the true efficiency 

scores and the mean Spearman’s rho correlation coefficient 

of DEA scores with the true efficiency scores.  

Ha: The mean Spearman’s rho correlation coefficient of 

MILP with the true efficiency scores is greater than the mean 

Spearman’s rho correlation coefficient of DEA scores with 

the true efficiency scores.  

The results, in terms of mean Spearman’s rho correlation 

coefficients, standard deviations are reported in Table II. In 

all cases, Ho is rejected at α= 0.000001 level. 

In all cases, the mean Spearman’s rho correlation 

coefficients of MILP with the true efficiency scores are 

greater than the mean Spearman’s rho correlation coefficients 

of DEA scores with the true efficiency scores. The 

differences are all statistically significant. This result implies 

that using a common weight set, MILP can provide a more 

accurate ranking of DMUs than DEA. It is also observed that 

the larger the sample size (n=60 compares with n=20) the 

better is the performance of both methods. 

 
TABLE II: MEAN* SPEARMAN’S RHO CORRELATION COEFFICIENTS AND 

STANDARD DEVIATIONS** BETWEEN THE TRUE EFFICIENCY SCORES AND 

THE EFFICIENCY SCORES OF DEA, AND BETWEEN THE TRUE EFFICIENCY 

SCORES AND THE EFFICIENCY SCORES OF MILP 

Case DEA efficiency scores with 

the true scores 

MILP-efficiency scores with 

the true scores 

1 0.6550 (0.0733) 0.8670 (0.0872) 

2 0.6997 (0.0756) 0.9102 (0.0398) 

3 0.5425 (0.0801) 0.9014 (0.0585) 

4 0.6752 (0.0731) 0.8368 (0.0897) 

5 0.7295 (0.0739) 0.9109 (0.0447) 

6 0.5944 (0.0648) 0.8881 (0.0679) 

7 0.6547 (0.0778) 0.8513 (0.1056) 

8 0.8130 (0.0760) 0.9629 (0.0489) 

9 0.7579 (0.0843) 0.9360 (0.0839) 

10 0.4935 (0.1212) 0.7912 (0.1123) 

11 0.5012 (0.1456) 0.7885 (0.1025) 

12 0.3829 (0.1371) 0.7836 (0.1358) 

13 0.5321 (0.1266) 0.7787 (0.1216) 

14 0.5486 (0.1409) 0.7746 (0.1166) 

15 0.4291 (0.1470) 0.7541 (0.1507) 

16 0.5657 (0.1650) 0.7829 (0.1754) 

17 0.6465 (0.2021) 0.8460 (0.1622) 

18 0.5934 (0.1928) 0.7992 (0.1708) 

*Mean of 500 trials. 

**Value in parentheses is standard deviation. 

 

V. CONCLUSION 

This paper proposed a method which attempts to identify 

DMUs that may be overstated in terms of efficiencies by 

DEA and also determines a common set of weights via linear 

programming for the purpose of ranking efficiencies of 

DMUs. A common set of weights is useful when studying 

tradeoffs between different inputs and outputs especially 

when different inputs can be traded. The proposed method 

performs well in providing an efficiency ranking of DMUs.  
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