Antecedents of Brand Preference: Symbolic or Functional

Akin Kocak and Nursel Ruzgar

Abstract—This paper seeks to explore how symbolic brand features and functional brand features affect consumers’ brand preferences. Although researches on brand preferences have been focused on consumers’ cognitive judgments of brand attributes on a rational basis, the shift to experiential marketing, the cornerstone of branding, has expanded the role of the brand from a bundle of attributes to experiences. In this paper, besides functional features of brand (price and appearance), emotional factors of brand (experience, brand personality, and self-congruity) were chosen to determine consumers’ brand preferences criteria. It is found that symbolic/emotional factors were the main factors for brand preferences.

Index Terms—Brand preferences, experience, brand personality, self-congruity.

I. INTRODUCTION

Customer’s brand preferences take a vital role in marketing. There are many studies made on brand preference features based on brands and brand strategies. Majority of the studies in the literature focused on brand equity, brand image, brand knowledge, brand awareness, brand association, which means brand preferences have been focused on consumers’ cognitive judgement of brand attributes on a rational basis [1]. However, the shift to experiential marketing, the cornerstone of branding, has expanded the role of the brand from a bundle of attributes to experiences [2]. Experience became more critical when brands in the high-technology are taken account. Likewise, high-technology product features become more similar, consumers are often unable or unwilling to differentiate between brands on rational attributes alone [3]; thus they seek the brand that creates an experience; that intrigues them in a sensorial, emotional and creative way [2].

Besides experiences, it is argued that consumer’s preferences consist of the relationship between the consumer’s perception of brand’s personality and their perception of their own personalities [4]. In other word, brand preference is a function of brand self-congruity and brand personality which enhances the effect of brand experience on brand preferences [5]. It is suggested that effective branding results from the creation of both a cognitive and an emotive bond [6]. In other words, brands have both functional and symbolic significance for consumer [7]. Therefore, building on these prior studies, the purpose of the current study is to examine the effect of symbolic (brand experience, brand personality and self-congruity) and functional features for a smart phone. The purpose of the study leads us to explore the following research question; “Is the impact of symbolic brand features on brand preference higher than functional brand features for high-technological brands? High-tech brands have been recently examined and yet there is little empirical research on brand preferences of high-tech brands in the literature. Thus, this study has a contribution to literature with showing the effects of symbolic and functional brand features for high-tech brands.

II. RESEARCH MODEL DEVELOPMENT

The concept of brand experience and the effect of brand experience on brand preference and/or brand loyalty have recently emerged in the brand literature. Brand experiences include specific sensations, feelings, cognitions, and behavioral responses triggered by specific brand-related stimuli [5]. Thus, brand experience is beyond general evaluative judgments about the brand (e.g., “I like the brand”). Experiences may result in general evaluations and attitudes, especially evaluations of the experience itself (e.g., “I like the experience”) [5].

Brand experience includes various dimensions: a sensory dimension, which refers to the visual, auditory, tactile, gustative, and olfactory stimulations provided by a brand; an affective dimension, which includes feelings generated by the brand and its emotional bond with the consumer; an intellectual dimension, which refers to the ability of the brand to engage consumers’ convergent and divergent thinking; and a behavioral dimension, which includes bodily experiences, lifestyles, and interactions with the brand [8]. In the literature it was found that brand experience has positive affects on consumer satisfaction and brand loyalty, as well as brand preferences [2], [9].

Based on interpersonal relationship theory, in a consumer–brand relationship, consumers assume the perspective of the brand in order to articulate their own relationship views and may assign personality qualities to inanimate brand objects by thinking about brands as if they were human characters [9]. The personality of brand enables a consumer to express his or her own self [10], which thus creates a strong bond between the consumer and the brand [10]. Therefore, brand personality has an effect on brand preferences.

Brand personality traits are formed from consumer experience and any direct/indirect contact between the consumer and the brand [11]. From the aspect of individual experience, experiences help to formulate brand personality [11]. Based on this argument, brand personality enhance the effect of brand experience on brand preferences [2], [5], [9]. So, with this respect, the following hypotheses are proposed:
H1: Brand personality has an impact on brand preferences.
H2: Brand experience has an impact on brand personality.

Self-congruity theory suggests that favorable brand attitudes are partially a function of the image congruence phenomenon for which a mental comparison is made by the consumers in regards to the similarity or dissimilarity of a brand’s image and their own self-image [11]. It reflects brand’s symbolic benefits that affect consumers’ preferences, purchase intentions and loyalties [12]. Self-congruity concept is used to predict different facets of consumer behavior, such as brand preference, brand loyalty, brand choice [13]. Therefore, self-congruity is assumed an important driver of consumers’ brand preferences [2]. However, self-congruity effects should be stronger with greater consumer experience [14]. The brand-based self-congruity effects should be stronger because brand stimuli activate brand knowledge, providing a direct path to brand personality knowledge to apply in self-congruity evaluation [14]. Therefore, instead of using direct link of self-congruity to brand preferences, it is proposed that the effect of self-congruity on brand preferences can be seen through brand experience. With this respect, following hypothesis is developed.

H3: Self-congruity has an impact on brand experience.

Traditionally, price is considered as a powerful piece of information for the consumers [15]. Thus, consumer perception of price is considered as crucial determinants of shopping behavior and product choice [16]. Perceived price positively influences perceived quality, which leads purchase intention [17]. On the other hand, price sensitivity plays a great role for consumer behavior. The effect of price on purchase intention is low when the price sensitivity of consumer is low. For high tech brand, the price sensitivity is substantially low, in other words insensitive. Thus, influencing of pricing would be most probably ineffective [18]. Apart from direct relationship between perceived price and brand preferences, price is also considered as consumer experience creation factor [2]. Consumers may be willing to pay a premium for the brand experience, but not its cost [2]. Thus, the following two hypotheses are proposed:

H4: Perceived price does not have influence on brand preference.
H5: Perceived price has an impact on brand experience.

People use the appearance of products as a cue for evaluating functional attributes at purchase [19]. Similarly, brand’s aesthetic appeal enhance perception of value of consumer [2]. Likewise, appearance create differentiation among all brands [20]. For appearance, designers refer to as “character of brand” [20]. So, perception of product appearance enhances self brand connections for consumers [21]. Consumers prefer the brand that its appearance match with his or her self-congruity [22]. Consumer senses are enhanced by the brand design qualities, such as color, shape [2] and these senses directly link to his or her own self-image. Thus, appearance can be considered as a symbolic function. Consequently, there is a close relationship between appearance and self-congruity, and this relationships lead to purchase intention and brand preferences [23]. So, the following two hypotheses are proposed.

H6: Appearance has an impact on brand preferences.
H7: Appearance has an impact on brand self-congruity.

Up till now, seven hypotheses have been proposed. These hypotheses have been modeled and the related research model has been illustrated in Fig. 1.

III. METHODOLOGY

A survey method was used for data collection. For the questionnaire, existing scales seen in the literature were adopted and 5-point- Likert type scale (1 = strongly disagree, 5 = strongly agree) was used. In order to determine the relationship between the research dimensions depicted in Figure 1, a questionnaire was developed to survey a sample of young population in Toronto, Canada. A sample of 200 young consumers was selected randomly. Only 140 of the 200 young consumers participated in the survey. After discarding 24 of 140 responses that were incomplete, the remaining 116 responses were included for the analysis.

The scales used to measure this study’s model were obtained from previous studies. Scale of price, appearance, self-congruity, and brand preferences were adopted from Ebrahim et al. [2], and brand experience scale was adapted from Brakus et al. [5]. Lastly, brand personality scale was adopted from Aaker [10].

IV. ANALYSIS AND RESULTS

Structural equation modeling (SEM) was adopted to validate the instruments for unobserved constructs and test the research models. Analysis has three stages reliability test, confirmatory factor analysis (CFM) of both brand experience and brand personality, and model and hypotheses test with LISREL.

The first stage of the analysis was the reliability test. It was found that all scales were above the accepted point of 0.7. Thus, the data are reliable and dimensions can be used to determine the relationships within the model. The reliability statistics of dimensions and subdimensions were shown in Table I.
The second stage of the analysis was to apply to Confirmatory Factor Analysis (CFA). CFA determines the effect of each item to its latent variables. CFA was employed for brand personality and brand experience to see whether the data were valid for the scale, since those were measured 5 and 4 dimensions, respectively. Confirmatory factor analysis was run for the brand experience twice. In the first run brand experience was assumed to have one dimension and in the second run, it was assumed to have four subdimensions. When the scale was considered having one dimension, CFA also tested as having one dimension, but the result was not satisfactory (RMSEA: 0.12; Chi-Square: 288.44 (df: 90, p: 0.000)). Thus, five dimensional scale was used for this study. Standardize factor loading and t values are sown in Table III for brand experience.

TABLE I: RELIABILITY STATISTICS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Cronbach's Alpha (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>70.2</td>
</tr>
<tr>
<td>Appearance</td>
<td>85.6</td>
</tr>
<tr>
<td>Self-Congruity</td>
<td>77.7</td>
</tr>
<tr>
<td>Brand Personality</td>
<td></td>
</tr>
<tr>
<td>Sincerity</td>
<td>74.6</td>
</tr>
<tr>
<td>Excitement</td>
<td>75.3</td>
</tr>
<tr>
<td>Competence</td>
<td>71.5</td>
</tr>
<tr>
<td>Sophistication</td>
<td>72.3</td>
</tr>
<tr>
<td>Ruggedness</td>
<td>70.3</td>
</tr>
<tr>
<td>Brand Experience</td>
<td></td>
</tr>
<tr>
<td>Sensory</td>
<td>71.0</td>
</tr>
<tr>
<td>Affective</td>
<td>72.8</td>
</tr>
<tr>
<td>Behavioral</td>
<td>76.9</td>
</tr>
<tr>
<td>Intellectual</td>
<td>74.5</td>
</tr>
<tr>
<td>Brand Preferences</td>
<td>90.2</td>
</tr>
</tbody>
</table>

TABLE II: CFA FOR BRAND EXPERIENCE

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factor Loading (t values)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 2 4 5 7 8 10 11</td>
</tr>
<tr>
<td></td>
<td>2 .606 .362 .384</td>
</tr>
<tr>
<td></td>
<td>5 .493 .434 .485</td>
</tr>
<tr>
<td></td>
<td>8 .667 .452 .457</td>
</tr>
<tr>
<td></td>
<td>11 .435</td>
</tr>
<tr>
<td></td>
<td>12 .569 .470</td>
</tr>
<tr>
<td></td>
<td>4 5 6 7 8 9 10 11</td>
</tr>
<tr>
<td></td>
<td>2 .488 .470</td>
</tr>
<tr>
<td></td>
<td>3 .427 .500</td>
</tr>
<tr>
<td></td>
<td>4 .320 .320 .507</td>
</tr>
<tr>
<td></td>
<td>6 .429 .523 .511</td>
</tr>
<tr>
<td></td>
<td>7 .434 .434 .456</td>
</tr>
<tr>
<td></td>
<td>8 .470 .520 .379</td>
</tr>
<tr>
<td></td>
<td>10 .566 .544</td>
</tr>
<tr>
<td></td>
<td>11 .520 .379</td>
</tr>
<tr>
<td></td>
<td>13 .566 .544</td>
</tr>
<tr>
<td></td>
<td>14 .544 .544</td>
</tr>
</tbody>
</table>

Similarly, CFA was run for brand the personality scale. When the brand personality scale was tested, it was found that all goodness fit statistics of five dimensional scale were sufficient (RMSEA: 0.063; Chi-Square:125.91 (df: 80, p: 0.000); SRMR: 0.06; GFI: 0.90; CFI: 0.94). The scale was also tested as having one dimension, but the result was not satisfactory (RMSEA: 0.12; Chi-Square: 288.44 (df: 90, p: 0.000)). Thus, five dimensional scale was used for this study. Standardize factor loading and t values are sown in Table III brand personality.

TABLE III: CFA FOR BRAND PERSONALITY

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Items</th>
<th>Factor Loading (t values)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Down-to-earth</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6.88)</td>
</tr>
<tr>
<td></td>
<td>Sincerity</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5.30)</td>
</tr>
<tr>
<td></td>
<td>Sincere</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10.08)</td>
</tr>
<tr>
<td></td>
<td>Competence</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7.62)</td>
</tr>
<tr>
<td></td>
<td>Sophisticity</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7.39)</td>
</tr>
<tr>
<td></td>
<td>Ruggedness</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8.39)</td>
</tr>
<tr>
<td></td>
<td>Imaginative</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9.68)</td>
</tr>
<tr>
<td></td>
<td>Up-to-date</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7.50)</td>
</tr>
<tr>
<td></td>
<td>Reliable</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9.55)</td>
</tr>
<tr>
<td></td>
<td>Sophisticity</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8.03)</td>
</tr>
<tr>
<td></td>
<td>Upper Class</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7.38)</td>
</tr>
<tr>
<td></td>
<td>Imaginative</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8.19)</td>
</tr>
<tr>
<td></td>
<td>Outdoorsy</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6.87)</td>
</tr>
<tr>
<td></td>
<td>Ruggedness</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6.76)</td>
</tr>
</tbody>
</table>

We also looked at the correlations among items in each dimensions of brand experience and brand personality. Since correlation of items in each dimension is significant at the 0.01 level, the both scales have convergent validity (Table III and Table IV).

TABLE III: CORRELATION FOR BRAND EXPERIENCE

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>8</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>.606</td>
<td>.362</td>
<td>.384</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>.493</td>
<td>.434</td>
<td>.485</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>.667</td>
<td>.452</td>
<td>.457</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>.435</td>
<td>.569</td>
<td>.470</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE IV: CORRELATION FOR BRAND PERSONALITY

<table>
<thead>
<tr>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>.488</td>
<td>.470</td>
<td>.500</td>
<td>.507</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.427</td>
<td>.320</td>
<td>.500</td>
<td>.429</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.290</td>
<td>.320</td>
<td>.507</td>
<td>.523</td>
<td>.511</td>
<td>.434</td>
<td>.456</td>
<td>.470</td>
<td>.379</td>
<td>.566</td>
<td>.544</td>
</tr>
</tbody>
</table>
The third stage of the analysis was to test the proposed model and the hypotheses by using LISREL 8 [24]. The structural equation modeling technique [24] was applied to test our research model and hypotheses. Based on the model fit measures, chi-square statistic of the proposed research model was 235.65 (df: 181, p: 0.004). For a goodness of model fit, the ratio χ²/df should be as small as possible. A ratio between 2 and 3 is indicative of a good or acceptable data-model fit [25]. The ratio in the study is 1.3. Moreover, as the χ² statistic is sensitive to sample size, we looked at RMSEA. RMSEA is relatively independent of sample size and thus performs well as indices of practical fit. Most of the commonly used incremental fit indices exhibit relative independence from sample size and thus are useful indices of practical fit [26]. RMSEA values lower than .10 indicate a good fit to the data, and mentioned that RMSEA values ≤ .05 can be considered as a good fit, values between .05 and .08 as an adequate fit, and values between .08 and .10 as a mediocre fit, whereas values > .10 are not acceptable [25]. The RMSEA of our model is .0051 which is well within the acceptable range. Additionally, SRMR should be smaller than .10 may be interpreted as acceptable [25]. Since SRMR of the model is .008, our model is acceptable. Regarding the other goodness fit statistics, CFI value is 0.92, which is above the expected value of 0.90. However, GFI is below the expected value of 0.90 (GFI: 0.84). Since, all other values indicate the model is sufficient, we can ignore the last fit statistic.

The test results of the research hypotheses were illustrated in Table V with maximum likelihood parameter estimates (standardized solutions). Similar to related literature, it was found that brand personality has a positive impact on brand preferences (H1: beta: 0.24, t: 2.20, p<0.05). Thus, there was a very strong relationship between self-congruity and experience (H3: beta: 0.84, t: 4.05, p<0.001). It was also found that brand experience had influences on brand personality (H2: beta: 0.24, t: 3.39, p<0.01). However, surprisingly, the effect of price on brand preferences was not supported (H4: beta:0.01, t: 0.09, p>0.05). While price did not have impact on brand preferences, price had a positive impact on brand experience (H5: beta: 0.27; t: 2.04, p<0.05). Regarding the effect of appearance, it was found that appearance had impact on both self-congruity (H7: beta: 0.49, t:4.09, p<0.001) and brand preferences (H6: beta: 0.35, t: 0.35, p<0.001). Thus, our all hypotheses were supported.

TABLE V: HYPOTHESES TEST RESULTS

<table>
<thead>
<tr>
<th>Hypotheses</th>
<th>Beta (t-value)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 Brand Personality -></td>
<td>0.24</td>
<td>Supported</td>
</tr>
<tr>
<td>Brand Preference -></td>
<td>(2.20)***</td>
<td></td>
</tr>
<tr>
<td>Experience -></td>
<td>0.56</td>
<td>Supported</td>
</tr>
<tr>
<td>Self-Congruity -></td>
<td>(3.39)**</td>
<td></td>
</tr>
<tr>
<td>H3 Self-Congruity -> Experience</td>
<td>0.84</td>
<td>Supported</td>
</tr>
<tr>
<td>(4.05)**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4 Price -> Brand Preference</td>
<td>0.01</td>
<td>Supported</td>
</tr>
<tr>
<td>Experience -></td>
<td>(0.09)</td>
<td></td>
</tr>
<tr>
<td>H5 Price -> Experience</td>
<td>0.27</td>
<td>Supported</td>
</tr>
<tr>
<td>Appearance -></td>
<td>(2.04)**</td>
<td></td>
</tr>
<tr>
<td>H6 Brand Preference</td>
<td>0.35</td>
<td>Supported</td>
</tr>
<tr>
<td>Appearance -></td>
<td>(3.46)**</td>
<td></td>
</tr>
<tr>
<td>Self-Congruity</td>
<td>0.49</td>
<td>Supported</td>
</tr>
<tr>
<td>H7 Self-Congruity</td>
<td>(4.09)**</td>
<td></td>
</tr>
</tbody>
</table>

NOTES: * p<0.05; ** p<0.01; ***p<0.001

V. CONCLUSION

The study enhance our understanding on which features of brand are important for brand preferences. It was found that the symbolic features of brand were more effective for brand preferences. On the other hand, at first seen, contradictory results were found for physical features of brand. While the appearance had impact on brand preferences, price did not. However, we consider appearance as a symbolic feature of brand instead of physical features. Ebrahim [2] also indicated that there was a close relationship between appearance and experience. Thus, the results in this study showed that the main effect of brand preferences was symbolic features. Price was not in a preference choice. Considering the mobile phone, the results supported similar researches [27], [28]. Alamro and Rowley [28] found that price was the less effective factor for mobile phone brand preferences. Regarding brand personality, findings of study and Alamro and Rowley [28]’s finding were similar. Brand personality had impact on brand preferences. As Brakus et al [5] stated that brand personality enhanced the impact of brand experience. Our results also supported this finding.

According to finding, mobile phone firms should be focus on experience, self-congruity, and appearance, instead of price.

Main limitations of this study were the sample size and profile. Results might be different if the survey conducted to more people and different age group. For the future research, same construct should be tested in different countries and different age groups to generalize the results.

REFERENCES

