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Abstract—The present work joins in a scientific context 

which returns within the framework of the modelling and of the 

mathematical and IT analysis of models in dynamics of 

populations. In particular, it deals with the application of the 

mathematics and with the computing in the management of 

fisheries. In this work, we define a bio-economic model in the 

case of two marine species whose natural growth is modeled by 

a logistic law. These two marine species are exploited by two 

fishermen. The objective of the work is to find the fishing effort 

that maximizes the profit of each fisherman by using Nash 

equilibrium and taking into account constraints related to the 

conservation of biodiversity. 

 
Index Terms—Bio-economic model, maximizing profits, 

generalized Nash equilibrium GNE, linear complementarity 

problem LCP.  

 

I. INTRODUCTION 

There exist very many elaborate mathematical models 

according to various parameters, and make it possible to 

make projections on the evolution of the fisheries and stocks 

of the marine species [1]-[4]. 

The models can then be categorized in two parts, those 

purely biological which do not take into account the 

economic interests, and those bioeconomic which integrate 

the output and the benefit of the fishermen [5]-[11]. 

In this work, we propose a model of two fishermen acting 

in an area containing two marine fish species. The evolution 

of fish populations is described by a density-dependent 

model, taking into account the competition between fishers 

(see the model of Verhulst [12]). More specifically, the 

bio-economic model consists of three parts: A biological part 

that links catch to biomass stock, a part of exploitation that 

links catch to fishing effort at equilibrium and an economic 

part that links effort fishing for profit. 

The objective of each fisherman is to maximize his income 

without consulting the other by respecting two constraints: 

the first is the sustainable management of resources; the 

second is the preservation of biodiversity. With all these 

considerations, our problem leads to Nash equilibrium 

problem, to solve this problem, we transform it into a linear 

complementarity problem. 

This work is organized as follows. In Section 1, we present 

a Mathematical study of the bioeconomic model of one 

marine species caught by one or two fishermen. Seeking to 
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find the fishing effort that maximizes the profit of each 

fisherman taking into account constraints related to the 

conservation of biodiversity. In Section II we define the 

mathematical model of two marine species exploited by two 

fishermen. In Section III, we compute the Nash equilibrium 

point. In Section IV, we give a numerical simulation of the 

mathematical model and the discussion of the results. Finally, 

we conclude with a conclusion. 

 

II. BIOECONOMIC MODEL FOR ONE MARINE SPECIES  

In this section we consider the simple case of one marine 

species. 

The interest lies in the study of a bioeconomic problem of a 

one marine specie exploited by one fisherman, which is 

characterized and presented by the equation 

 

1
X

X rX qEX
K

                             (1) 

 

where r is the intrinsic growth rate,K is the carrying capacity, 

E is the fishing effort to exploit the one marine species by the 

fisherman and q is the catchability coefficient of marine 

species. 

Our goal is to calculate the effort E  that maximize the 

fisherman's profit  
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where p  is the price of the fish population and pH pqEX  

is the total revenue. 
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The interest in the second part of this section concerns the 

study of a bioeconomic problem of one species exploited by 

two fishermen following the equation 

 

1 21
dX X

rX H H
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where i iH qE X  for 1,2i  . 

Our objective is to find 1 2,E E E which maximize the 

profit 1 2,  of the two fishermen. 

At equilibrium we will have 1
1 21

r
X K q E E .  

Then the first fisherman must solve the problem 

 

2 2 21
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1 1 2 2
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and the second fisherman must solve the problem 
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2 2 1 2

1 1 2 2
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The objective is to calculate the fishing effort which 

maximize the profit of each fisherman during the biological 

equilibrium for the two problems (P1) and (P2). 

We recall that the point 1 2( , )E E E is called Nash 

equilibrium point if and only if 1E is a solution of problem 

(P1) for 2E   given, and 2E  is solution of problem (P2) for 

1E  given. 

The essential conditions of Karush-Kuhn-Tucker applied 

to the problem (P1) and (P2) require that if 1E is a solution of 

the problem (P1) and if 2E is a solution of the problem (P2), 

then there exist constants 1 2, ,m m v  such that 
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This problem is equivalent to the linear complementarity 

problem LCPM,b where 
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The matrix M  is a P-matrix, then LCP(M,b) have one 

solution given by 

1
1 2

2
2 2
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E

pK q
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III. BIOECONOMIC MODEL FOR TWO MARINE SPECIES  

There are many mathematical models developed according 

to different parameters and allow to make projections on the 

evolution of the fishery and the stocks of the marine species. 

The models can then be categorized into two parts, purely 

biological ones that do not take economic interests into 

account, and bioeconomic ones that integrate the returns and 

returns of fishermen. 

A. Biological Model  

The biological factors that play a role in the dynamics of 

these populations are none other than the rates of growth of 

this population which includes birth and death as well as 

individual movements. 

According to the Malthus population dynamics model (see 

G. F. Gause [13]): 

 

1 1
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1
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( )
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dX t X
r X c X X
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dX t X

r X c X X
dt K

                    (4) 

 

where ir is the stock growth rate for 1,2i  , iK  is the 

system load capacity for 1,2i , iX is the population 

density 1,2i  and 1 2ij i j
c  Coefficient of competition 

between species i  and species j . 
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This solution may give the coexistence of the two species 

of fish, in which case the biomasses of the two species of fish 

are positive with 1 12 2 0r c K  and 2 21 1 0r c K . 

B. Equilibrium Analysis  

The steady state solutions are the solutions of the equations 

 

1

1

2

2

1 1 12 1 2

2 2 21 1 2

1 0

1 0

X

K
X

K

r X c X X

r X c X X
                        (5) 

 

This system of equations has eight solutions 

1(0, 0),P 2 1 3 2( ,0), (0, )P K P K  and 4 1 2( , )P X X  where 
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The variational matrix of the system (4) is 

 

1
1 12 2 12 1

1
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Lemma 1: The point 1(0, 0)P is unstable. 

Proof: The variational matrix of the system (4) at the 

steady state 1(0, 0)P is 

1
1

2

0

0

r
J

r
 

The eigenvalues of 1J are 1 1r  and 2 2r . Then, the 

point 1(0, 0)P  is unstable. 

 

 
 

Fig. 1. Behaviors and phase portrait of system (4) at 1(0, 0)P .with the initial 

value (0) 0.01x , (0) 0.01y . The steady state 1P of system (4) is 

unstable. Here 1 0.5r , 2 0.6r , 1 10K , 2 15K , 12 0.01c and 

21 0.02c . 

 

Lemma 2: The point 2 1( , 0)P K is unstable. 

Proof: The variational matrix of the system (4) at the 

steady state 2 1( , 0)P K  is 

1 12 1
2

2 21 10

r c K
J

r c K
 

 

The eigenvalues of 2J are 1 1r and 2 2 21 1r c K  . 

Then, the point 2 1( , 0)P K  is unstable. 

 

 
 

Fig. 2. Behaviors and phase portrait of system (4) at 2(10,0)P .with the initial 

value (0) 9.9x , (0) 0.01y . The steady state 2P  of system (4) is stable. 

Here 1 0.5r , 2 0.6r , 1 10K , 2 15K , 12 0.01c and 21 0.02c . 

 

Lemma 3: The point 3 2(0, )P K  is unstable. 

Proof: The variational matrix of the system (4) at the 

steady state P30,K2 is 

1 12 2
3

21 2 2

0r c K
J

c K r
 

The eigenvalues of 3J  are 1 1 12 2r c K and 2 2r .  

Then, the point 3 2(0, )P K is unstable. 

 
 

Fig. 3. Behaviors and phase portrait of system (4) at 3(0,15)P .with the initial 

value (0) 0.01x , (0) 14.9y . The steady state 3P  of  system (4) is stable. 

Here 1 0.5r , 2 0.6r , 1 10K , 2 15K , 12 0.01c and 21 0.02c . 

 

 

 

Lemma 4: The point 4 1 2( , )P X X  is stable. 

Proof: The variational matrix of the system (4) at the 

steady state 4 1 2( , )P X X  is 

1

1

2

2

1 12 1

4

21 2 2

X

K
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K
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1 2

1 2
4 1 2( ) 0X X

K K
trace J r r  and 

1 2

1 2
4 12 21 1 2( ) 0r r

K K
det J c c X X . 

Then, the point 4 1 2( , )P X X  is stable. 

 

  
 

 

Fig. 4. Behaviors and phase portrait of system (4) at  

4(7.776189158,11.10779185)P .with the initial value (0) 7.77x , 

(0) 11.10y . The steady state 4P  of system (4) is stable. Here  

1 0.5r , 2 0.6r , 1 10K , 2 15K , 12 0.01c  and 21 0.02c .  

 

 

 

C.  Bioeconomic Model  

The model for the evolution of fish population becomes 

 

1

1

2

2

1 1 1 12 1 2 1 1 1

2 2 2 21 1 2 2 2 2

(1 )

(1 )

X

K
X

K

X r X c X X q E X

X r X c X X q E X
              (6) 

 

where 1,2,3( )j jq are the catchability coefficients of species j ; 

and 1,2,3( )j jE are the fishing effort to exploit a species j . 

The catchability coefficient q is a key parameter in the 

validation process of fishing simulation model (see [14]). In 

this paper this parameter is assumed to be constant. 

The fishing effort is defined as the product of a fishing 

activity and a fishing power. The fishing effort deployed by a 

fleet is the sum of these products over all fishing units in the 

fleet. The fishing activity is in units of time. The fishing 

power is the ability of a fishing unit to catch fish and is a 

complex function depending on vessel, gear and crew. 

However, since measures of fishing power may not be 

available, activity (such as hours or days fished) has often 

been used as a substitute for effort. 
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It is interesting to note that according to the literature, the 

effort depends on several variables, namely for example: 

Number of hours spent fishing; search time; number of hours 

since the last fishing; number of days spent fishing; number 

of operations; number of sorties flown; ship, technology, 

fishing gear, crew, etc. However, in this paper, the effort is 

treated as a unidimensional variable which includes a 

combination of all these factors. Now we give the expression 

of biomass as a function of fishing effort. 

The biomasses at biological equilibrium are the solutions 

of the system 

 

1

1

2

2

1 12 2 1 1

2 21 1 2 2

(1 )

(1 )

X

K
X

K

r c X q E

r c X q E
                          (7) 

 

The solutions of this system are given by 

 

1 11 1 12 2 1

2 21 1 22 2 2

 
X a E a E X

X a E a E X
                       (8) 

 

where, 11 1 2 1 /a K r q , 12 1 2 2 12 /a K K q c , 

21 1 2 21 1 /a K K c q  and 22 1 2 2 /a r K q .  

Or in matrix form X AE X where 

1 , 3( )ij i jA a  and  1 2( , )TE E E . 

It is natural to assume that j k ij ji i jr r c c K K  for all 

, 1,2j k  which implies that 0iia  for all 1,2i . 

The profit for each fisherman ( )i E is equal to total 

revenue ( )iTR minus total cost ( )iTC , in other words, the 

profit for each fisherman is represented by the following 

function 

( ) ( ) ( )i i iE TR TC  

 

We use, as usual in the bioeconomic models, the fact that 

the total revenue ( )TR depends linearly on the catch, that is, 

Total revenue = Price x Catches 

As mentioned previously, we note that ij j ij jH q E X  

Catches of species j by the fisherman i , where Eij is the 

effort of the fisherman  i   to exploit the species j . It is clear 

that 1
n
ij ijH H  is the total catches of species j by all 

fisherman. 

On the other hand, we denote by 1
n
ij ijE E  the total 

fishing effort dedicated to species j  by all fisherman and 

by 1 2( , )i T
i iE E E  the vector fishing effort must provide by 

the fisherman i  to catch the three species. 

With these notations we have 

2 2

1 1,

( ) , ,i i i j
i j ij

j j j i

TR p H E pqAE E pqX pqAE  (9) 

where 1,2,3( )j jp is the price per unit biomass of the species j . 

In this work, we take 1p and 2p to be constants. 

We shall assume, in keeping with many standard fisheries 

models (e.g., the model of Clark [1] and Gordon [5]), that 

( ) , i
iTC c E , where ( )iTC is the total effort cost of the 

fisherman i , and 1,2( )j jH  = constant cost per unit of 

harvesting effort of species j  . 

As mentioned previously, the net economic revenue of 

each fisherman is represented by the following function 

( ) ( ) ( )i i iE TR TC .  

It follows that 

2

1,

( ) , ,i i i j
i

j j i

E E pqAE E pqX c pqAE       (10) 

 

As we have mentioned previously, the biological model is 

meaningful only insofar as the biomass of all the marine 

species are strictly positive (conservation of the biodiversity), 

then we have 0X AE X . In other words, for the 

fisherman i   

1,

.
n

i j

j j i

AE X AE

                          (11) 

 

IV. NASH EQUILIBRIUM 

In this section, we restrict our self to the case when we 

have only two fishermen. For this case we can solve 

analytically the problem and give the solutions in explicit 

form. 

Each fisherman trying to maximize his profit and achieve a 

fishing effort that is an optimal response to the effort of the 

other fishermen. We have a generalized Nash equilibrium 

where each fisherman's strategy is optimal taking into 

consideration the strategies of all other fishermen. A Nash 

Equilibrium exists when there is no unilateral profitable 

deviation from any of the fishermen involved. In other words, 

no fisherman would take a different action as long as every 

other fisherman remains the same. This problem can be 

translated into the following two mathematical problems: 

The first fisherman must solve problem  P1:  

1 1 1 2
1

1 2
1

1

2

max ( ) , ,

subject to

                    ( )

                    0

                      is given.

E E pqAE E pqX c pqAE

AE AE XP
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and the second fisherman must solve problem P2: 
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We recall that 1 2( , )E E  s called Generalized Nash 

equilibrium point if and only if 1E is a solution of problem 

( 1)P  for 2E  given, and 2E is a solution of problem ( 2)P  for 

1E given. 

For solving the Nash equilibrium problem we use the 

essential conditions of Karush-Kuhn-Tucker. These 

conditions applied to the problem 1( )P and to the problem 1( )P , 

require that if 1E   is a solution of the problem 1( )P and if 2E  

is a solution of the problem 2( )P , then there exist constants 

1,u 2,u ,v 1, 2 2IR  such that 

 
1 1 2 1

2 2 1 2

1 2

2

2

, , 0     for all 1,2

, , , 0                  for all 1,2

T

T

i i i

i i i

u pqAE c pqX pqAE A

u pqAE c pqX pqAE A

v AE AE X

u E v i

E u v i

 

 

To maintain the biodiversity of species, it is natural to 

assume that all biomasses remain strictly positive, that is 

0jX for all 1,2j ; therefore 0v . 

As the scalar product of 1,2( )i i and v is zero, so 0i for 

all 1,2i . So 

 
1 1 2

2 1 2

1 2

2
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thus 
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Let us denote by 
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2 2

2

, , 2 0 ,  
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then our problem is equivalent to the Linear 

Complementarity Problem  ( , )LCP M b : 

Find vectors 6,z w IR such 

that 0w Mz b , , 0z w , 0Tz w . It is easy to show that 

the matrix M is Pmatrice  and use the following result. 

Theorem 1: ( , )LCP M b has a unique solution for every b if 

and only if M is a P-matrix. 

Proof: See [15]-[18]. 

Therefore the linear complementarity problem ( , )LCP M b  

admits one and only one solution. This solution is given by 

 

11
( )

3

c
E A X

pq
                           (13) 

where 1A  is the inverse of A , this matrix is given by 

 

1 12

1 1 1

21 2

2 2 2

1

r c

K q q
c r

q K q
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V.  NUMERICAL SIMULATIONS  

We take as a case of study two marine species having the 

following characteristics:  

 

r10,5 K11000 q10,1 c122.104 c10,05 p140

r20,3 K2700 q20,02 c21105 c20,10 p260
 

 

We'll see how changes in the price or the number of 

fishermen can affect the effort of catch, the level of captures 

and the profits of fishermen. As a first result we have (Table 

I): an increase in price leads to an increase in fishing effort 

and an increase in catch levels. 

 
TABLE 1: AN INCREASE IN PRICE LEADS TO AN INCREASE IN FISHING 

EFFORT AND INCREASE IN CATCH LEVELS 

Price of the Price of the Total effort to Total captures of

first specie second specie catch the two species the two species

02,00 03,00 62,89 530,02

05,00 07,50 63,34 532,17

08,00 12,00 63,45 532,71

10,00 15,00 63,49 532,89

14,00 21,00 63,53 533,09

18,00 27,00 63,55 533,20

20,00 30,00 63,56 533,24

30,00 45,00 63,59 533,36

40,00 60,00 63,60 533,42

 

Now we will see the influence of the number of fishermen 

on the catch levels and on the profit (see Table II); to do so, 

we consider three situations: 

In the first one we consider only one fisherman who 

catches the two marine species, to maximize the profit of this 

fisherman constrained by the conservation of the biodiversity 

of the two marine species, he must catch 569,92 , in this case 

his profit is equal to 7260,31 . 

In the second one we consider two fishermen who catch 

the two marine species, to maximize the profit, each 

fisherman must catch 506,35 , in this case the profit of each 

fisherman is equal to 3226,80 , this situation reduces the catch 

of each fisherman by 88,85%and reduces the profit of each 

fisherman by 44,44% . 

In the third situation we consider ten fishermen who catch 

the two marine species, to maximize the profit, each 

fisherman must catch 188,24 , in this case the profit of each 

fisherman is equal to 240,01 , this situation reduces the catch 

of each fisherman by 33,03% and reduces the profit of each 

fisherman by 3,31% . 
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So the three situations show that, when the number of 

fishermen is increasing, the catch and the profit of each 

fisherman are decreasing. 

 
TABLE II: THE INFLUENCE OF NUMBER OF FISHERMEN ON THE CATCH AND 

PROFIT 

 Catch/Fisherman Profit/Fisherman 

Situation n 1 569,92 7260,31 

Situation n 2 506,35 3226,80 

Situation n 3 188,24 240,01 

 

On the contrary, since the number of fishermen is 

increasing, the total catch is increasing, but the total profit is 

decreasing. 

Now we see that an increase in fishermen number leads to 

an increase in the total fishing effort and reduced the total 

profit as shown in Table III.  

 
TABLE III: THE INFLUENCE OF NUMBER OF FISHERMEN ON THE TOTAL 

FISHING EFFORT AND TOTAL PROFIT 

Fishermen number Total fishing effort Total Profit

01 fisherman 34,98 7260,31

02 fishermen 46,64 6453,61

03 fishermen 52,47 5445,23

05 fishermen 58,30 4033,50

10 fishermen 63,60 2400,10

15 fishermen 65,59 1701,63

20 fishermen 66,63 1317,06

25 fishermen 67,27 1074,01

30 fishermen 67,70 906,59

35 fishermen 68,02 784,29

40 fishermen 68,25 691,05

45 fishermen 68,44 617,61

50 fishermen 68,59 558,27

 

VI. CONCLUSION 

We have calculated the fishing effort that maximizes the 

profit of each fisherman at biological equilibrium by using 

the Nash equilibrium problem. The existence of the steady 

states and its stability are studied using eigenvalue analysis. 

Finally, some numerical examples are given to illustrate the 

results. 

 In this work, we have considered that the prices of fish 

species are constants, we consider in a future work to define 

functions of providing long term, where price is no longer a 

constant but depends on the level of effort and biomass stock 

of each species remaining. 
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