
  

 

Abstract—In practice the quantity received may not match 

the quantity ordered due to various reasons such as rejection 

during inspection, human errors in counting, damage or 

breakage during transportation and worker’s strike, etc. Under 

this background, we investigate a continuous review inventory 

model with shortage including the case where the quantity 

received is uncertain, in which the lead time, safety factor, lost 

sales rates and order processing cost are decision in variables. 

The objective of this paper is to minimize the total relevant cost 

by simultaneously optimizing the order quantity, safety factor, 

lost sales rates and order processing cost. Two models are 

developed based on the probability distribution of lead time 

demand following a normal distribution and distribution free 

respectively. From the results of numerical example, it can be 

shown that, the significant savings can be achieved through the 

reductions of order processing cost, safety factor and lost sales 

rate. 

 
Index Terms—Lead time, shortage, order processing cost, 

safety factor, EOQ. 

 

I. INTRODUCTION 

Traditional inventory models assumed that lead time is a 

constant or random variable which is not a controllable factor. 

In fact, lead time could be shortened by paying an additional 

crashing cost, which could be expenditures on equipment 

improvement, information technology, order expedite, or 

special shipping and handling. By reducing lead time, one can 

decrease the stock out loss as improving the customer’s 

satisfaction level. Thus, controllable lead time is a key to 

business achievement and it has attracted considerable 

research attention in present supply chain and inventory 

management system. As the same lead time, it is very 

important to improve the customer’s satisfaction level. 

Liao and Shyu [1] first devised a probabilistic inventory 

model in which lead time was the unique decision variable. 

Later many researchers developed lead time reduction 

inventory models under various crashing cost function and 

practical situations. Hsu and Lee [2] explored a single 

manufacturer multiple retailer integrated inventory system 

with the assumption of a non-increasing stair-step lead time 

crashing cost function. In contrast to existing inventory 

models, this paper considers two models that the crashing cost 

is an exponential function of lead time and the demand 

distribution follows a normal distribution and a distribution 
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free, respectively. 

Order processing cost reduction inventory research has 

received increasing attentions and hot topic in recent years. 

However, most of the existing inventory model assumed that 

order processing cost is fixed. In practice, order processing 

cost can be controlled and reduced through various efforts 

such as worker training, procedural changes and specialized 

equipment acquisition. Initially, Porteus [3] first investigated 

the impact of capital investment in reducing ordering cost on 

the classical economic order quantity model. Ouyang et al. [4] 

discussed ordering cost and lead time reductions in 

continuous review inventory systems with partial backorders. 

Later, Chang et al. [5] presented lead time and ordering cost 

reduction problem in the single vendor single buyer integrated 

inventory model. Jha and Shanker [6] presented an integrated 

production-inventory model where a vendor produces an item 

and supplies it to a set of buyers. Yi and Sarker [7] used 

controllable lead time in a buyer–vendor system. Giri and Roy 

[8] studied a two-echlon supply chain inventory system with a 

singal manufacturer and a single buyer, considering price 

dependent demand and variable lead time. Vijayashree and 

Uthayakumar [9] considered a single-vendor and a 

single-buyer integrated inventory model with ordering cost 

reduction dependent on lead time.They considered that lead 

time can be shortened at an extra crashing cost which depends 

on the lead time length to be reduced and the ordering lot size, 

as well buyer ordering cost can be reduced through further 

investment.  

Recently, Annadurai and Uthayakumar [10] presented and 

analyzed a probabilistic inventory model under continuous 

review for the system with controllable lead time and optimal 

ordering cost caused by investment strategy subject to a 

service level constraint. Shahpouri et al. [11] assumed that 

shortages are either completely lost or completely backlogged 

in several inventory models. Montgomery et al. [12] is among 

the first who considered that a fraction of demand is back 

ordered and the remaining fraction is lost. Ouyang et al. [13] 

generalized Ben-Daya and Raouf’s [14] model, where the 

backorder rate is fixed to a mixture of backorder and lost sales 

model. Ouyang and Chuang [15] investigated a mixture 

inventory model involving variable lead time and controllable 

backorder rate. They observe that many products of famous 

brands or fashionable goods such as certain brand gum shoes, 

hi-fi equipment, cosmetics and clothes may lead to a situation 

in which customers prefer their demands to be backordered 

when shortages occur. Harada et al. [16] presented an 

inventory model in which the order quantity, reorder point, 

and lead time are regarded as decision variables with 

controllable backorder rate.The stochastic inventory models 

analyzed in this paper involve two models that are continuous 
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review and periodic review in which the backorder rate is a 

random variable. Certainly, if the quantity of shortages is 

accumulated to a degree that exceeds the waiting patience of 

customers, some customers may refuse the backorder case. 

This phenomenon reveals that, as short ages occur, the longer 

the length of lead time is, the larger the amount of shortages is, 

the smaller the proportion of customers can wait and hence 

the smaller the backorder rate would be. 

The above inventory models assumed that the quantity 

received is the same as the quantity ordered. But in real life 

circumstances, the quantity received may not match the 

quantity ordered due to various reasons such as damage or 

breakage during transportation, rejection during inspection, 

human errors in counting, transcribing, etc. In a recent paper, 

Kurdhi et al. [17] investigated continuous review inventory 

models involving service level constraint in which lead time, 

reorder point, ordering cost and order quantity are treated as 

decision variables and quantity received is uncertain. Priyan 

and Uthayakumar [18] explored a model in which the 

received quantity is uncertain. However, the safety factor, one 

key factor in inventory control policy, is not taken into 

account. Moreover, they assume the demand during lead time 

(DDLT) follow normal distribution. In most case, the 

distribution information of the lead time demand is very 

limited. In this paper, under the background of uncertain 

quantity received, we take safety factor into consideration and 

extend the DDLT from normal distribution to distribution free. 

However, the safety factor is not a decision variable in Priyan 

and Uthayakumar’s [18] model. 

In this paper, the lead time, safety factor, lost sales rate and 

order processing cost are decision variables. We minimize the 

expected annual total cost per unit time by simultaneously 

optimizing the order quantity, order processing cost, safety 

factor, backorder price discount, and lead time. We develop 

two inventory models with normal-distribution and 

distribution free DDLT under the background of uncertain 

quantity received. Furthermore, we provide numerical 

example to clarify the solution algorithm and to demonstrate 

the advantage of implementing the optimal inventory policy. 

Numerical results indicate that considerable cost savings 

could be realized through the optimal policy. 

 

II. NOTATION AND ASSUMPTIONS 

To model the problem, let first introduce the notation and 

assumptions of the model, part of which are adopt from Priyan 

[18]. 

A. Notations 

Variable: 

D  average demand per year. 

Y  received quantity, a random variable. 

  bias factor which is the expected amount received   

amount ordered, 0 1  . 

0A  original ordering cost (before any investment is made). 

h  inventory holding cost per unit per year. 

  fixed penalty cost per unit short. 

0  marginal profit per unit. 

0  original fraction of the shortage that will be lost. 

X  demand during lead time, a random variable. 

( )f x  the probability distribution function (p.d.f) of X . 

( )E   expected value. 

x  maximum value of x  and 0 , i.e.,  ,0x max x  . 

Decision variable: 

k  safety factor. 

  fraction of the demand backordered during the stockout 

period, 0 1  , while the remaining fraction (1 )    is 

lost sales. 

A  ordering cost per order. 

L  length of lead time. 

Q  order quantity. 

B. Assumptions 

1. The quantity received is uncertain and depends on the 

quantity ordered. 

2. The system uses a continuous review inventory policy 

and the order quantity Q  is placed whenever the inventory 

level falls to the reorder point r . The reorder point r  = 

expected DDLT ( )DL  the safety stock (
sS ), and 

sS kX  

(standard deviation of lead time demand), i.e. 

r DL k L   where k  is the safety factor and satisfies 

( )Pr X r q  , q  represents the allowable stock-out 

probability during lead time and is given. 

3. The reorder point r  doesn’t affect the ordering policy of 

this inventory system since the total cost of the inventory 

system is independent of reorder point r . 

4. The lead-time crashing cost per order, ( )R L , is assumed 

to be an exponential function of L  and is defined as 

0

/

0

0 ,
( )

,C L

b

L L
R L

e L L L


 

 
 

where C  is a positive constant and 
0L  and 

bL  represent the 

existing and the shortest lead time, respectively. 

5. During the stockout period, a fraction   of the demand 

will be backordered, and the remaining fraction (1 )    

will be lost. The ordering cost A  and lost sales   can be 

reduced by capital investment 
0 ( )I A  and 

1( )I  , 

respectively. 

 

III. MATHEMATICAL MODELS 

Based on the above notations and assumptions, the 

expected annual total cost per cycle which is the sum of 

ordering cost, holding cost, stockout cost, and lead time 

crashing cost. Therefore, the retailer’s total expected annual 

cost is given by 

( , , ) (1 ) ( )
2

( ) ( )

Q
EAC Q r L h r DL E X r

A E X r R L









     

   

 
             (1) 

where ( )E X r   is the expected number of shortages per 

Journal of Economics, Business and Management, Vol. 6, No. 3, August 2018

98



  

cycle and 
0(1 )      . 

This study considers the amount received is uncertain, that 

is, if a quantity Q  is ordered each time, the quantity received 

will be Y  which is a random variable with ( | )E Y Q Q . 

Under the assumptions mentioned given before, the total 

cost per cycle with a variable lead time can be obtained as 

model (1) given that Y  units are received is 

0

( , , ) ( )
2

( ) ( ) ( )

Y

Y Y
E Y r L h r DL E X r

D

A E X r R L



 





 
     

 

    

          (2) 

Therefore, the expected total cost per cycle with variable 

lead time when the amount received is uncertain is 

 

2 2 2 2

0 1 0

( , , ) | ( )

( ) ( ) ( ) ( )
2

X Y

Q
E E Y r L Q A h r DL E X r

D

h
Q E X r R L

D




    





      

        

    (3) 

Moreover, the expected cycle time is 

( | )E Y Q Q

D D


                                (4) 

Hence, from (3) and (4) and (1) we obtain the expected 

annual total cost with variable lead time when the amount 

received is uncertain, denoted by ( , , )EAC Q r L , is 

2 2 2 2

0 1

0

( , , ) ( )

( )
2

( ) ( )
( )

AD
E Q r L h r DL E X r

Q

h
Q

Q

D R L D
E X r

Q Q




  


 

 





      

    


  

                (5) 

The relationship between ordering cost reduction and 

capital investment can be described by the logarithmic 

investment cost function. That is, ordering cost, A , and the 

capital investment in ordering cost reduction, 
0I , can be 

stated as: 

0

0 1 0( ) ( ) for 0
A

I A c ln A A
A

    

Similarly, the relationship between lost sales,  , and 

capital investment in lost sales reduction, 
1I , is described by 

0

1 2 0( ) ( ) for 0I c ln


  


    

where 
11/ c  and 

21/ c  are the fraction of the reduction in A  

and   per dollar increase in investment, respectively. 

Therefore, the total investment in ordering cost and lost sales 

rate reduction is 

0 1( , ) ( ) ( )I A I A I    

A. Normal Distribution Model 

We assume that the lead time demand X has a normal p.d.f 

( )f x  with mean DL , standard deviation L , and the 

reorder point r DL k L  where k  is the safety factor. 

Shortage occurs when X r . Hence, the expected shortages 

at the end of the cycle time is given by 

( ) ( ) ( ) ( )
r

E X r x r f x dx L k         (6) 

where ( ) ( ) [1 ( )] 0k k k k . and , are the 

standard normal probability density function and cumulative 

distribution function, respectively. 

Hence, using (6) and r DL k L , (5) can be 

reduced to 

2 2 2 2

0 1

0

( , , ) [ ( )]

[ ( ) ]
2
( ) ( )

( )

AD
EAC Q k L h r DL L k

Q
h

Q
Q

R L D
L k

Q Q

         (7) 

Now our problem is to minimize the sum of the investment 

in ordering cost, lost sales rate reduction, and the inventory 

relevant costs as expressed in (7) by simultaneously 

optimizing , ,Q A  and L , constrained on 
0

0 A A  and 

0
0 . That is, the objective of our problem is to 

minimize the following expected annual total cost 

0 1

2 2 2 2

0 1

0

( , , , , ) ( , ) ( , , )

[ ( ) ( )] [ ( )]

[ ( ) ]
2
( ) ( )

( )

EAC Q A k L I A EAC Q k L

AD
I A I h L k k

Q
h

Q
Q

D R L D
L k

Q Q

       (8) 

Subject to 
0

0 A A  and 
0

0 , where  is the 

annual fractional cost of capital investment. Thus, our 

problem can be transformed to 

0 0
1 2

2 2 2 2

0 1

0

( , , , , ) ( )

[ ( )] [ ( ) ]
2

( ) ( )
( )

A
minEAC Q A k L c ln c ln

A

AD h
h L k k Q

Q Q
D R L D

L k
Q Q

   (9) 

where ( ) ( ) [1 ( )] 0k k k k and 
0

[ , ]
b

L L L . 

The problem formulated in the previous section appears as 

a constrained non-linear programming problem. In order to 

solve this kind of nonlinear problem, we follow the similar 

procedure of most of the literature dealing with nonlinear 

problem. That is, first we temporarily ignore the constraints of 

0
0 A A  and 

0
0 , then determine the optimum 

solutions of ,Q k  and 
0 0

[ , ], (0, ]
b

L L L A A  and 

0
(0, ]  which minimizes expected annual total cost, 

( , , , , )EAC Q A k L . Initially, we can simplified 

( , , , , )EAC Q A k L  is a convex or concave function of 
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0 0
[ , ], (0, ]
b

L L L A A  and 
0

(0, ]  for fixed Q  and k  

by Lemma 1. 

Lemma 1: For fixed , ,Q A , and k , ( , , , , )EAC Q A k L  

is a convex or concave function of 
0

[ , ]
b

L L L . 

Proof: Taking the first and second partial derivatives of 

( , , , , )EAC Q A k L  with respect to L , we can obtain 

/

0 2

( , , , , )
( ( ))

2
( )

( )
2

C L

EAC Q A k L h
k k

L L
k D DCe

QLQ L

 

and 

2

2 3/2

/

03/2 2 2

( , , , , )
( ( ))

4
( ) 2 1

( ) ( )
2 2

C L

EAC Q A k L h
k k

L L
k D DCe C

LQL QL L

        (10) 

For fixed , ,Q A  and k , (10) can be rewritten as: 

2

2 3/2

( , , , , )
( )

4

EAC Q A k L D
a bQ

L QL
        (11) 

where 
/

2

8 1
( )

2

C LCe C
a

L LL

 and 
0

( ( )) ( )( )
h

b k k k
D

. 

Based on (11), the sign of 
2

2

( , , , , )EAC Q A k L

L
 is 

determined by the value ( )a bQ , and it is obvious that 

0b . Since the trend of ( , , , , )EAC Q A k L  depends on the 

sign of 
2

2

( , , , , )EAC Q A k L

L
, we discuss the sign of 

2

2

( , , , , )EAC Q A k L

L
 in two cases: 

Case 1. ( ) 0a bQ : 
2

2

( , , , , )
0

EAC Q A k L

L
. Hence, 

( , , , , )EAC Q A k L  is a convex function of L  on the interval 

1
[ , ]
b b
L L . In this case, the minimum expected annual total 

cost ( , , , , )EAC Q A k L occurs on the interval 
1

[ , ]
b b
L L . 

Case 2. ( ) 0a bQ : 
2

2

( , , , , )
0

EAC Q A k L

L
. Hence, 

( , , , , )EAC Q A k L  is a concave function of L  on the 

interval 
1

[ , ]
b b
L L . In this case, the minimum expected annual 

total cost, ( , , , , )EAC Q A k L , at the end point of the interval 

1
[ , ]
b b
L L  

This completes the proof of Lemma 1. 

Now, first we temporarily ignore the constrains 
0

(0, ]A A  

and 
0

(0, ]  for fixed 
1

[ , ]
b b
L L , take the first partial 

derivatives of ( , , , , )EAC Q A k L  with respect to , ,Q k A  

and , we obtain 

2
2 20
12 2

02 2

( , , , , )
( )

22
( )

( ) ( )

hEAC Q A k L AD h

Q Q Q
R L DD

L k
Q Q       

(12) 

0

( , , , , )
1 ( )

( )
1 ( )

EAC Q A k L
h L h L k

k
D

L k
Q

     (13) 

1( , , , , ) cEAC Q A k L D

A A Q
               (14) 

2
0

( , , , , )

( ) ( ( ))

EAC Q A k L

c D
h L k L k

Q

           (15) 

Then, by examining the second order sufficient conditions, 

it can be verified that ( , , , , )EAC Q A k L  is a convex 

function of Q  and k  for fixed 
0 0

[ , ], (0, ]
b

L L L A A  and 

0
(0, ] . 

On the other hand, for a given value of 
0

[ , ]
b

L L L , by 

setting (12)-(15) equal to zero, we obtain 

1/2
2

0
0

2 2

1

2 ( ) ( ) ( )
2

( )

h
D A L k R L

D
Q

h

       (16) 

0

( ) 1
( )

h Q
k

h Q D
               

(17) 

1
c Q

A
D

                           (18) 

2

0
( )( )

c Q

L k h Q D
                       (19) 

Theoretically, for fixed 
0

[ , ]
b

L L L , by solving (16)-(19), 

we can obtain the values of , ,Q A  and k  (denote these 

values by *Q , *A , 
*

 and *( )k , respectively). The 

following proposition asserts that, for fixed 

0 0
[ , ], (0, ]
b

L L L A A  and 
0

(0, ] , the point * *( , )Q k  

is the optimal solution. Hence that the expected total cost, 

( , , , , )EAC Q A k L , has minimum value. 

Based on the convexity and concavity behavior of 

objective function with respect to the decision variables the 

following algorithm is developed to find the optimal values 

for the order quantity, ordering cost, lost sales and lead time. 

Algorithm: 

Step 1. For each 0[ , ]bL L L , repeat step (1.2) and (1.3) 

until no change occurs in the values of , ,Q k A  and  . 
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Denote the solution by ( , , , )Q k A     . 

Step 1.1. Start with 
1 0A A  and 

1 0  . 

Step 1.2. Substitute 
1A  and 

1  into (16) and (17) 

evaluates 
1Q  and 

1k . 

Step 1.3. Utilizing 
1Q  and 

1k  determines 
2A  and 

2  

from (18) and (19). 

(i) If 
0A A  and 

0   , then the solution found in step 2 

is optimal for the given L . We denote the optimal solution by 

( , , , )Q k A     , i.e., if ( , , , ) ( , , , )Q k A Q k A         , go to 

step 4. 

(ii) If 
0A A  and

0   , then for this given L , let 

0A A   and utilize (16) and (17) (replace A  by 
0A ), and (19) 

to determine the new ,Q k   and    by a solution procedure 

similar to the one in step 1 (the result is denoted by ( , )Q   . 

If
0   , then the optimal solution is obtained, i.e., 

if
0( , , , ) ( , , , )Q k A Q k A        , go to step 4; otherwise, go 

to step 3. 

(iii) If 
0A A   and

0   , then for this given L , let 

0    and utilize (16) and (17) (replace    by
0 ), and 

(19) to determine the new ,Q k   and    by a solution 

procedure similar to the one in step 1 (the result is denoted 

by ( , )Q   . If 
0A A  , then the optimal solution is obtained, 

i.e., if
0( , , , ) ( , , , )Q k A Q k A        , go to step 4; 

otherwise, go to step 3. 

(iv) If 
0A A   and

0   , go to step 3. 

Step 3. For the given L , let 
0A A   and

0   , and 

utilize (16) and (17) (replace A  by 
0A  and    by

0 , to 

determine the corresponding optimal solution Q and k   by a 

procedure similar to the one in step 1. 

Step 4. Utilize (8) to calculate the corresponding expected 

annual total cost ( , ,EAC Q k , )A  . 

Step 5. Find * * * * *( , , , , )EAC Q k A L  

Min ( , , , , )EAC Q k A L    for every 
0[ , ]bL L L , then 

* * * * *( , , , , )EAC Q k A L  is the minimum expected annual cost 

of proposed model, and * * * * *( , , , , )Q k A L  is the optimal 

solution. The reorder point 
* * * *r DL k L  . 

B. Distribution Free Model 

Now we consider the distribution free approach. Hence, a 

minimax distribution free procedure is applied to solving this 

problem. 

( , , , , )FMinMax EAC Q A k L               (20) 

Subject to 
00 A A   and 00    . 

The following proposition is used to approximate the value 

of ( )E X r  . 

Proposition 1: For any F , 

 2 21
( ) ( ) ( )

2
E X r L r DL r DL            (21) 

Substituting r DL k L   into (21), we obtain the 

following inequality 

21
( ) ( 1 )

2
E X r L k k                       (22) 

Now using (3) and inequality (22), (20) reduces to 

2

0 1

2 2 2 2 20

0 1

( , , , , ) ( , ) ( , , )

[ ( ) ( )] [ ( 1 )]
2

( )
( ) ( 1 )

2 2

( )

W WEAC Q A k L A EAC Q k L

AD
I A I h L k k k

Q

D Lh
Q k k

Q Q

R L D

Q

  


  



  
  

 



 

      


       



(23) 

Subject to 
00 A A   and

00    . 

We first ignore two constraints and obtain 

2

/
20

2

( , , , , )
[ ( 1 )]

22

( )
( 1 )

4

W

C L

EAC Q A k L h
k k k

L L

D DCe
k k

QLQ L

  

  




   




   

     (24) 

2
2

2 3/2

/
20

3/2 3

( , , , , )
[ ( 1 )]

2

( ) 2
( 1 ) (1 )

24

W

C L

EAC Q A k L h
k k k

L L

D DCe C
k k

LQL QL

  

  

 


    




    

   (25) 

On the other hand, we temporarily ignore the constraints 

0(0, ]A A  and *

0(0, ]  , then for a given value of 

0[ , ]bL L L , we obtain 

1/2
2

20
0

2 2

1

2 [ ( )( 1 ) ( )]
2

( )

h
D A k k L R L

DQ
h


  

 

 
       

  
 

  

(26) 

2
0

1
( )1

k h Q

h Q Dk



   
 
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                (27) 

1c Q
A

D


                                (28) 

2

2
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( 1 )( )

c Q

L k k h Q D
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

  


  
             (29) 

For fixed , ,Q A   and k , (25) can be rewritten as: 

2

2 3/2

( , , , , )
( )

4

EAC Q A k L D
a bQ

L QL

 




 
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          (30) 

where 
/

2

8 1
( )

2

C LCe C
a

L LL
   and 

2

0( )( 1 )
h

b k k
D


      . 
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Based on (30), the sign of 
2

2

( , , , , )WEAC Q A k L

L




 is 

determined by the value ( )a bQ , and it is obvious that 

0b  . Since the trend of ( , , , , )WEAC Q A k L depends on the 

sign of
2

2

( , , , , )WEAC Q A k L

L




, similar normal distribution we 

discuss the sign of 
2

2

( , , , , )WEAC Q A k L

L




 in two cases: 

Case 3. ( ) 0a bQ  :
2

2

( , , , , )
0

WEAC Q A k L

L





. Hence, 

( , , , , )WEAC Q A k L is a convex function of L  on the 

interval 
1[ , ]b bL L 

. In this case, the minimum expected annual 

total cost, ( , , , , )WEAC Q A k L on the interval 
1[ , ]b bL L 

. 

Case 4. ( ) 0a bQ  :
2

2

( , , , , )
0

WEAC Q A k L

L





. Hence, 

( , , , , )WEAC Q A k L is a concave function of L  on the 

interval 
1[ , ]b bL L 

. In this case, the minimum expected annual 

total cost, ( , , , , )EAC Q A k L at the end point of the interval 

1[ , ]b bL L 
. 

 

IV. NUMERICAL ANALYSIS 

To illustrate the above issues, the values of the following 

parameters which are almost similar to those use in : 

600D  unit/year, $20h  /unit/year, 

$20  /unit/year,
0 $150  /unit/year 7  /unit/week, 

2

0 100  , 2

1 0.1   and 0.9  ,
0 0.3  , 

30C  ,
0 10L   days and 6bL   days. Besides, we consider 

a situation where the initial ordering cost 
0 200A  /order, 

initial lost sales rate
0 0(1 ) 0.7    , 0.1  , 

1 5800c   

and 
2 0.2c  . 

A. Effects of Parameter on Optimal Solution 

The demand D , holding cost h , investment cost 
1c  and 

2c  sensitivity analysis are performed in order to understand 

how various D , h , 
1c , and 

2c  affect the optimal solution of 

the model. The example 1 and example 2 use a normal 

distribution and distribution free, respectively. In addition, we 

compare our numerical with Priyan and Uthayakumar’s [18] 

model to illustrate the effect of safety factor as a decision 

variable. The summarization of the comparison is shown in 

Table I-Table IV. 

In this world no one can accurately predict his customer 

demand in advance. Therefore, the assumptions of uncertain 

demand is might appropriate for all industries in this world. 

Additionally, when the demand is uncertain, reorder point 

becomes an important issue and its control leads to several 

benefits. Shorter lead time reduces the safety stock and the 

loss caused by stock-out, improves customer service level and 

increases the competitive advantage of business. Here we 

present the managerial implications of proposed model based 

on the numerical results and effect of model parameters. 

Table I shows that the lot size Q , ordering cost A  and 

expected total cost * *( , ,WEAC Q A  * *, )L  decreases when 

the safety factor k  increase. Introducing the variable safety 

factor, we obtained a better result than Priyan et al.’s [18] 

when the safety factor was determined for 0.25k   (see 

Table I-Table IV). 

1. Table I shows that when demand D increases, the 

expected total cost * * * *( , , , )WEAC Q A L  increase. 

2. In Table II, it is interesting to note that when holding 

cost h  increases, the optimal lot size Q , ordering cost 

A , lost sales   decreases and expected annual total 

cost 
* * * *( , , , )EAC Q A L  increases without affecting 

the lead time L . This result is expected because 

higher holding cost may amplify total cost in the real 

marketing. 

3. Table III shows that when the investment cost function 

1c  increase, the optimal lot size Q , ordering cost A , 

lost sales   and expected annual total cost 

* * * *( , , , )EAC Q A L  increases without affecting 

the lead time L . 

4. It is interesting to note that expected total cost 

* * * *( , , , )EAC Q A L  increases when the 
2c  

increases without affecting the lead time (see Table 

IV). 

B. Evaluation of Expected Value of Additional Information 

( )EVAI
 

Now, we compare the results of distribution free model 

with the normal distribution model EVAI . If we utilize the 

solution 
* * * * *( , , , , )Q k A L  obtained by the distribution 

free approach instead of utilizing 
* * * *( , , , )Q A L  from the 

normal distribution case, then the added cost will be 

* * * * * * * * *( , , , , ) ( , , , )WEAC Q k A L EAC Q A L  . 

This amount is the expected value of additional information 

that the buyer would be willing to pay for the information 

regarding the nature of lead time demand distribution (see 

Table V). 

 

TABLE I: EFFECTS OF DEMAND D  ON OPTIMAL SOLUTION OF EXAMPLE 1 

Reorder point as a decision variable Fixed 0.25k   in [18] Saving( % ) 

D  L  
*Q  *A  

* 5(10 ) 
 

*k  ( )EAC   * * * 4(( , , 1 )0 )Q A  
 ( )EAC    

400 8 100 130.2 1.1330 0.757 2618.2 (152,200,1.92) 3186 17.82 

600 8 106 91.8 1.2568 1.006 3015.3 (179,155,1.52) 3859 21.86 

800 8 112 72.7 1.3336 1.1490 3319.2 (201,131,1.29) 4408 24.70 

1200 8 123 53.2 1.4299 1.3302 3785.4 (238,104,1.03) 5303 28.62 
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TABLE II: EFFECTS OF HOLDING COST h  ON OPTIMAL SOLUTION OF EXAMPLE 1 

Reorder point as a decision variable Fixed 0.25k   in [18] Saving( % ) 

h  L  
*Q  *A  

* 5(10 ) 
 

*k  ( )EAC   * * * 4(( , , 1 )0 )Q A  
 ( )EAC    

10 8 169 146.3 2.6632 1.1449 2121.2 (264,200,1.45) 2719 21.99 

15 8 127 110.4 1.7219 1.0683 2608.0 (215,198,1.84) 3344 22.01 

20 8 106 91.8 1.2568 1.0016 3015.3 (179,155,1.52) 3859 21.86 

25 8 93 80.4 0.9807 0.9416 3376.4 (145,126,1.23) 4317 21.79 

30 8 84 72.6 0.7985 0.8863 3706.7 (126,110,1.07) 4731 21.65 

 

TABLE III: EFFECTS OF INVESTMENT COST FUNCTION 
1c  ON OPTIMAL SOLUTION OF EXAMPLE 1 

Reorder point as a decision variable Fixed 0.25k   in [18] Saving( % ). 

1c  L  
*Q  *A  

* 5(10 ) 
 

*k  ( )EAC   * * * 4(( , , 1 )0 )Q A  
 ( )EAC    

4500 8 96 64.2 1.2913 1.0681 2887.6 (171,115,1.45) 3808 24.17 

5800 8 106 91.8 1.2568 1.0016 3015.3 (179,155,1.52) 3859 21.86 

6500 8 112 108.5 1.2387 0.9664 3066.1 (182,177,1.55) 3872 20.81 

7200 8 118 126.6 1.2209 0.9317 3108.8 (187,200,1.60) 3875 19.77 

 

TABLE IV: EFFECTS OF INVESTMENT COST FUNCTION 
2c  ON OPTIMAL SOLUTION OF EXAMPLE 1 

Reorder point as a decision variable Fixed 0.25k   in [18] Saving( % ). 

2c  L  
*Q  *A  

* 5(10 ) 
 

*k  ( )EAC   * * * 4(( , , 1 )0 )Q A  
 ( )EAC    

0.1 8 106 91.8 0.62835 1.0015 3015.2 (179,156,3.05) 3863 21.95 

0.2 8 106 91.8 1.2568 1.0016 3015.3 (179,155,1.52) 3859 21.86 

0.3 8 106 91.8 1.8853 1.0016 3015.4 (178,154,0.91) 3857 21.80 

0.5 8 106 91.8 3.1425 1.0017 3015.6 (177,152,0.25) 3854 21.75 

 
TABLE V: THE OPTIMAL SOLUTION OF EXAMPLE 2 

D  L  
*Q  *A  

* 5(10 ) 
 

*k  ( )EAC   EVAI  

400 8 128 167.6 0.912 1.0111 2819.1 200.9 

600 8 141 123.1 0.807 1.2787 3328.5 313.2 

800 8 152 99.5 1.4751 1.4791 3721.7 402.5 

1200 8 170 74.3 1.2970 1.2970 4329.6 544.2 

 

V. CONCLUSION 

In the real world, the retailer can’t accurate prediction 

customer’s demand, received quantity, etc., in advance. 

Therefore, the assumptions of uncertain demand and received 

quantity are might appropriate for all industries in this world. 

Additionally, the lead time, order received rate, safety factor 

and backorder play important roles in inventory control 

policy. A continuous review inventory model is developed to 

investigate the effects of the optimal solution, in which capital 

investment strategies in order processing cost and lost sales 

rate reduction are adopted in the uncertain demand. By 

analyzing the expected annual total cost, we develop 

algorithm to determine the optimal order quantity, ordering 

cost, backorder price discount, safety factor, lost sales rate 

and lead time simultaneously. The results of the numerical 

examples indicate that if we make decisions with the capital 

investment in reducing order processing cost, lost sales rate 

and offering backorder price discount to customers, it will 

help to lower the system cost. Therefore we can obtain a 

significant amount of savings to increase the competitive edge 

in business. Future research may consider multi items and 

permissible delay in payments and fuzzy demand in this 

model. It would be interesting to consider the procurement 

lead time as a random variable and discuss the effects in 

reducing lead time variability. Another possible extension of 

this work may be conducted by considering lead time 

dependent partial backlogging in this inventory model. 
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